A229970 Numbers n such that the product of their proper divisors is a palindrome > 1 and not equal to n.
4, 9, 25, 49, 121, 212, 1001, 2636, 10201, 17161, 22801, 32761, 36481, 97969, 110011, 124609, 139129, 146689, 528529, 573049, 619369, 635209, 844561, 863041, 1100011, 10100101, 11000011, 101000101, 106110601, 110000011, 110271001, 112381201, 127938721, 130210921
Offset: 1
Examples
The product of the proper divisors of 2636 is 6948496 (a palindrome). So, 2636 is a member of this sequence. The product of the proper divisors of 8 is 8 (a palindrome) but equal to 8. So 8 is not in this sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..62
Crossrefs
Cf. A007956.
Programs
-
Maple
isA002113 := proc(n) dgs := convert(n,base,10) ; for i from 1 to nops(dgs)/2 do if op(i,dgs) <> op(-i,dgs) then return false; end if; end do: true ; end proc: for n from 4 do if not isprime(n) then ppd := A007956(n) ; if n <> ppd and isA002113(ppd) then printf("%d,",n); end if; end if; end do: # R. J. Mathar, Oct 09 2013
-
Mathematica
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; fQ[n_] := Block[{s = Times @@ Most@ Divisors@ n}, And[palQ@s, s > 1, s != n]]; Select[Range@ 1000000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Apr 06 2015 *)
-
PARI
ispal(n)=Vecrev(n=digits(n))==n is(n)=my(k=if(issquare(n,&k),k^numdiv(n)/n,n^(numdiv(n)/2-1))); k!=n && k>1 && ispal(k) \\ Charles R Greathouse IV, Oct 09 2013
-
PARI
pal(n)=d=digits(n);Vecrev(d)==d for(n=1,10^6,D=divisors(n);p=prod(i=1,#D-1,D[i]);if(pal(p)&&p-1&&p-n,print1(n,", "))) \\ Derek Orr, Apr 05 2015
-
Python
from sympy import divisors def PD(n): p = 1 for i in divisors(n): if i != n: p *= i return p def pal(n): r = '' for i in str(n): r = i + r return r == str(n) {print(n, end=', ') for n in range(1, 10**4) if pal(PD(n)) and (PD(n)-1) and PD(n)-n} ## Simplified by Derek Orr, Apr 05 2015
Extensions
a(14)-a(18) from R. J. Mathar, Oct 09 2013
a(19)-a(34) from Charles R Greathouse IV, Oct 09 2013
Definition edited by Derek Orr, Apr 05 2015
Comments