cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229970 Numbers n such that the product of their proper divisors is a palindrome > 1 and not equal to n.

Original entry on oeis.org

4, 9, 25, 49, 121, 212, 1001, 2636, 10201, 17161, 22801, 32761, 36481, 97969, 110011, 124609, 139129, 146689, 528529, 573049, 619369, 635209, 844561, 863041, 1100011, 10100101, 11000011, 101000101, 106110601, 110000011, 110271001, 112381201, 127938721, 130210921
Offset: 1

Views

Author

Derek Orr, Oct 04 2013

Keywords

Comments

Since the product of proper divisors must be > 1, these terms are necessarily composite. - Derek Orr, Apr 05 2015

Examples

			The product of the proper divisors of 2636 is 6948496 (a palindrome). So, 2636 is a member of this sequence.
The product of the proper divisors of 8 is 8 (a palindrome) but equal to 8. So 8 is not in this sequence.
		

Crossrefs

Cf. A007956.

Programs

  • Maple
    isA002113 := proc(n)
        dgs := convert(n,base,10) ;
        for i from 1 to nops(dgs)/2 do
            if op(i,dgs) <> op(-i,dgs) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 4 do
        if not isprime(n) then
            ppd := A007956(n) ;
            if n <> ppd and isA002113(ppd) then
                printf("%d,",n);
            end if;
        end if;
    end do: # R. J. Mathar, Oct 09 2013
  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; fQ[n_] := Block[{s = Times @@ Most@ Divisors@ n}, And[palQ@s, s > 1, s != n]]; Select[Range@ 1000000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Apr 06 2015 *)
  • PARI
    ispal(n)=Vecrev(n=digits(n))==n
    is(n)=my(k=if(issquare(n,&k),k^numdiv(n)/n,n^(numdiv(n)/2-1))); k!=n && k>1 && ispal(k) \\ Charles R Greathouse IV, Oct 09 2013
    
  • PARI
    pal(n)=d=digits(n);Vecrev(d)==d
    for(n=1,10^6,D=divisors(n);p=prod(i=1,#D-1,D[i]);if(pal(p)&&p-1&&p-n,print1(n,", "))) \\ Derek Orr, Apr 05 2015
  • Python
    from sympy import divisors
    def PD(n):
      p = 1
      for i in divisors(n):
        if i != n:
          p *= i
      return p
    def pal(n):
      r = ''
      for i in str(n):
        r = i + r
      return r == str(n)
    {print(n, end=', ') for n in range(1, 10**4) if pal(PD(n)) and (PD(n)-1) and PD(n)-n}
    ## Simplified by Derek Orr, Apr 05 2015
    

Extensions

a(14)-a(18) from R. J. Mathar, Oct 09 2013
a(19)-a(34) from Charles R Greathouse IV, Oct 09 2013
Definition edited by Derek Orr, Apr 05 2015