cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A229971 Palindromes n whose product of proper divisors is a palindrome > 1 and not equal to n.

Original entry on oeis.org

4, 9, 121, 212, 1001, 10201, 110011, 1100011, 10100101, 11000011, 101000101, 110000011, 1010000101, 1100000011, 10000000001, 10100000101, 1000000000001, 10000000000001, 10011100000111001, 10022212521222001, 10100101110100101, 10101100100110101
Offset: 1

Views

Author

Derek Orr, Oct 04 2013

Keywords

Comments

Palindromes in the sequence A229970.

Examples

			The product of the proper divisors of 4 is 2 (also a palindrome, different from 4). So, 4 is a member of this sequence.
The proper divisors of 1001 are 1, 7, 11, 13, 77, 91, and 143. 1*7*11*13*77*91*143 = 1001^3 = 1003003001 (also a palindrome, different from 1001). So, 1001 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; fQ[n_] := Block[{s = Times @@ Most@ Divisors@ n}, And[palQ@ s, s > 1, s != n]]; Select[Select[Range@ 1000000, palQ], fQ] (* Michael De Vlieger, Apr 06 2015 *)
    ppdpQ[n_]:=Module[{pp=Times@@Most[Divisors[n]]},AllTrue[{n,pp},PalindromeQ]&&pp>1&&pp!=n]; Select[Range[115*10^4],ppdpQ] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Sep 18 2022 *)
  • PARI
    pal(n)=d=digits(n);Vecrev(d)==d
    for(n=1,10^6,D=divisors(n);p=prod(i=1,#D-1,D[i]);if(pal(n)&&pal(p)&&p-1&&p-n,print1(n,", "))) \\ Derek Orr, Apr 05 2015
  • Python
    from sympy import divisors
    def PD(n):
      p = 1
      for i in divisors(n):
        if i != n:
          p *= i
      return p
    def pal(n):
      r = ''
      for i in str(n):
        r = i + r
      return r == str(n)
    {print(n,end=', ') for n in range(1,10**6) if pal(n) and pal(PD(n)) and (PD(n)-1) and PD(n)-n}
    # Simplified by Derek Orr, Apr 05 2015
    # Syntax error fixed by Robert C. Lyons, Mar 17 2023
    

Formula

A229970 INTERSECT A002113.

Extensions

a(7)-a(22) from Giovanni Resta, Oct 06 2013
Name edited by Derek Orr, Apr 05 2015
Showing 1-1 of 1 results.