A230031 Number A(n,k) of tilings of a k X n rectangle using tetrominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 4, 0, 4, 0, 1, 1, 0, 0, 23, 23, 0, 0, 1, 1, 0, 9, 0, 117, 0, 9, 0, 1, 1, 1, 0, 0, 454, 454, 0, 0, 1, 1, 1, 0, 25, 0, 2003, 0, 2003, 0, 25, 0, 1, 1, 0, 0, 997, 9157, 0, 0, 9157, 997, 0, 0, 1
Offset: 0
Examples
A(4,2) = A(2,4) = 4: ._______. ._______. ._______. ._______. | | | |_______| | |___. | | .___| | |___|___| |_______| |_____|_| |_|_____|. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 0, 0, 0, 1, 0, 0, 0, 1, ... 1, 0, 1, 0, 4, 0, 9, 0, 25, ... 1, 0, 0, 0, 23, 0, 0, 0, 997, ... 1, 1, 4, 23, 117, 454, 2003, 9157, 40899, ... 1, 0, 0, 0, 454, 0, 0, 0, 800290, ... 1, 0, 9, 0, 2003, 0, 178939, 0, 22483347, ... 1, 0, 0, 0, 9157, 0, 0, 0, 657253434, ... 1, 1, 25, 997, 40899, 800290, 22483347, 657253434, 19077209438, ...
Links
- Liang Kai, Antidiagonals n = 0..27, flattened (Antidiagonals n = 0..20 from Alois P. Heinz)
- S. Butler, J. Ekstrand, S. Osborne, TETRIS Tiling, AMS Spring Central Sectional, Iowa State University, April 27-28 2013
- R. S. Harris, Counting Polyomino Tilings
- Liang Kai, Solving tiling enumeration problems by tensor network contractions, arXiv:2503.17698 [math.CO], 2025.
- Wikipedia, Tetris
- Wikipedia, Tetromino
Crossrefs
Formula
A(n,k) = 0 <=> n*k mod 4 > 0.