cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230042 Palindromic primes with strictly increasing product of digits.

Original entry on oeis.org

2, 3, 5, 7, 181, 191, 353, 373, 383, 727, 757, 787, 797, 19891, 19991, 34843, 35753, 36563, 37573, 38783, 74747, 75557, 76667, 77977, 78787, 78887, 79997, 1987891, 1988891, 1998991, 3479743, 3487843, 3569653, 3586853, 3589853, 3689863, 3698963, 3799973
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 06 2013

Keywords

Comments

a(1)=2; a(n+1) is the smallest palindromic prime with product of digits > product of digits of a(n).

Examples

			a(6) = 191, product of digits is 9; a(7) = 353, product of digits is 45 and 45 > 9.
		

Crossrefs

Programs

  • Mathematica
    a = {}; t = 0; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], s = Apply[Times, IntegerDigits[z]]; If[s > t, t = s; AppendTo[a, z]]], {n, 10^4}]; a
    nxt[{p_,d_}]:=Module[{n=NextPrime[p]},While[!PalindromeQ[n]||Times@@ IntegerDigits[ n]<=d,n=NextPrime[n]];{n,Times@@IntegerDigits[n]}]; NestList[nxt,{2,2},40][[All,1]] (* Harvey P. Dale, Sep 30 2018 *)