A230072 Coefficients of an algebraic number sqLhat(2*l) in the power basis of the number field Q(2*cos(Pi/2*l)), related to the square of all length in a regular (2*l)-gon inscribed in a circle of radius of 1 length unit.
1, 3, 2, 7, 4, -1, 0, 4, 2, -9, -4, 8, 4, -1, 0, 8, 4, 15, 8, -24, -12, 8, 4, -1, 0, 16, 8, -16, -8, 4, 2, 7, 4, -16, -8, 8, 4, -1, 0, 24, 12, -32, -16, 8, 4, 23, 12, -104, -52, 128, 64, -56, -28, 8, 4, -1, 0, 32, 16, -32, -16, 8, 4, -25, -12, 176, 88, -320, -160, 232, 116, -72, -36, 8, 4
Offset: 1
Examples
The table a(l,m) (n = 2*l) starts (row length A055034(2*l)): l, n\m 0 1 2 3 4 5 6 7 8 9 10 1 1, 2: 1 2, 4: 3 2 3, 6: 7 4 4, 8: -1 0 4 2 5, 10: -9 -4 8 4 6, 12: -1 0 8 4 7, 14: 15 8 -24 -12 8 4 8, 16: -1 0 16 8 -16 -8 4 2 9, 18: 7 4 -16 -8 8 4 10, 20: -1 0 24 12 -32 -16 8 4 11, 22: 23 12 -104 -52 128 64 -56 -28 8 4 12, 24: -1 0 32 16 -32 -16 8 4 13, 26: -25 -12 176 88 -320 -160 232 116 -72 -36 8 4 14, 28: -1 0 48 24 -160 -80 168 84 -64 -32 8 4 15, 30: -1 0 16 8 -24 -12 8 4 ... l = 3, n=6: (hexagon) sqLhat(6) = 13 + 4*rho(6) - 2*rho(6)^2 = 7 + 4*sqrt(3), where rho(6) = sqrt(3) and s(6) = 1. C(6,x) = x^2 -3. sqLhat(6) is approximately 13.92820323, therefore Mustonen's L2^(10) is approximately 501.4153163. l = 5, n=10: (decagon) sqLhat(10) = -9 - 4*rho(10) + 8*rho(10)^2 + 4*rho(10)^3 = 7 + 8*phi + 4*(-1 + (2+phi))*sqrt(2+phi) = 7 + 8*phi + 4*sqrt(7+11*phi), with the golden section phi = rho(5) = (1 + sqrt(5))/2. sqLhat(10) is approximately 39.86345818, therefore Mustonen's L2^(10) is about 3986.345818. Here rho(10) = sqrt(2+phi) and s(10) = phi - 1. l=6, n = 12: (dodecagon) sqLhat(12) = -1 + 8*rho(12)^2 + 4*rho(12)^3 = 15 + 6*sqrt(6) + 10*sqrt(2) + 4*sqrt(2)*sqrt(6), approximately 57.69548054. rho(12) = sqrt(2+sqrt(3)) and s(12) = sqrt(2 - sqrt(3)). Therefore Mustonen's L2^(12) is approximately 8308.149198.
Links
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations.
Formula
a(l,m) = [rho(2*l)^m](sqLhat(2*l) (mod C(2*l,rho(2*l)))), l >= 1, m = 0, ..., delta(2*l)-1, with delta(2*l) = A055034(2*l) and the formula for sqLhat(2*l) is given in a comment above.
Comments