A230079 Table a(n,m) of coefficients of inverses of rho(A230078(n)), n>=2, with rho(k):= 2*cos(Pi/k), in the power basis of Q(rho(A230078(n))).
1, -1, 1, 2, 1, -1, -3, 0, 1, 3, 3, -4, -1, 1, 0, 4, 0, -1, -3, 6, 4, -5, -1, 1, 4, 4, -1, -1, -4, 10, 10, -15, -6, 7, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, 0, 12, 0, -19, 0, 8, 0, -1, -8, -8, 6, 6, -1, -1, 6, 15, -35, -35, 56, 28, -36, -9, 10, 1, -1
Offset: 2
Examples
The table a(n,m) begins, with b(n):=A230078(n): n, b(n)\m 0 1 2 3 4 5 6 7 8 9 10 ... 2, 3: 1 3, 5: -1 1 4, 7: 2 1 -1 5, 9: -3 0 1 6, 11: 3 3 -4 -1 1 7, 12: 0 4 0 -1 8, 13: -3 6 4 -5 -1 1 9, 15: 4 4 -1 -1 10, 17: -4 10 10 -15 -6 7 1 -1 11, 19: 5 10 -20 -15 21 7 -8 -1 1 12, 20: 0 12 0 -19 0 8 0 -1 13, 21: -8 -8 6 6 -1 -1 14, 23: 6 15 -35 -35 56 28 -36 -9 10 1 -1 15, 24: 0 16 0 -20 0 8 0 -1 ... n=2: C(3, x) = x - 1, delta(3) =1, 1/rho(3) = 1, a rational integer. n=3: C(5, x) =x^2 - x -1, delta(5) = 2, a(3,0) = - c(5, 1)/c(5, 0) = -(-1)/(-1) = -1, a(3,1) = - c(5, 2)/c(5, 0) = -1/(-1) = +1. n =3: rho(5) = tau := (1 + sqrt(5))/2 (golden section); 1/rho(5) = -1*1 + 1*rho(5). n= 4: rho(7) = 2*cos(Pi/7), (approximately 1.801937736); 1/rho(7) = 2*1 + 1*rho(7) - 1*rho(7)^2, (approximately 0.5549581320). n=10: rho(17) = 2*cos(Pi/17), (approximately 1.965946199); 1/rho(17) = -4*1 + 10*rho(17) + 10*rho(17)^2 - 15*rho(17)^3 - 6*rho(17)^4 + 7*rho(17)^5 + 1*rho(17)^6 -1*rho(17)^7, (approximately 0.5086609190).
Comments