A230091 Numbers of the form k + wt(k) for exactly two distinct k, where wt(k) = A000120(k) is the binary weight of k.
5, 14, 17, 19, 22, 31, 33, 36, 38, 47, 50, 52, 55, 64, 67, 70, 79, 82, 84, 87, 96, 98, 101, 103, 112, 115, 117, 120, 131, 132, 143, 146, 148, 151, 160, 162, 165, 167, 176, 179, 181, 184, 193, 196, 199, 208, 211, 213, 216, 225, 227, 230, 232, 241, 244, 246, 249, 258, 260, 262, 271, 274, 276, 279, 288, 290, 293, 295
Offset: 1
Examples
5 = 3 + 2 = 4 + 1, so 5 is in this list.
Links
Programs
-
Haskell
a230091 n = a230091_list !! (n-1) a230091_list = filter ((== 2) . a228085) [1..] -- Reinhard Zumkeller, Oct 13 2013
-
Maple
# Maple code for A000120, A092391, A228085, A010061, A228088, A230091, A230092 with(LinearAlgebra): read transforms; wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: # A000120 M:=1000; lis1:=Array(0..M); lis2:=Array(0..M); ctmax:=4; for i from 0 to ctmax do ct[i]:=Array(0..M); od: for n from 0 to M do m:=n+wt(n); lis1[n]:=m; if (m <= M) then lis2[m]:=lis2[m]+1; fi; od: t1:=[seq(lis1[i],i=0..M)]; # A092391 t2:=[seq(lis2[i],i=0..M)]; # A228085 COMPl(t1); # A010061 for i from 1 to M do h:=lis2[i]; if h <= ctmax then ct[h]:=[op(ct[h]),i]; fi; od: len:=nops(ct[0]); [seq(ct[0][i],i=1..len)]; # A010061 again len:=nops(ct[1]); [seq(ct[1][i],i=1..len)]; # A228088 len:=nops(ct[2]); [seq(ct[2][i],i=1..len)]; # A230091 len:=nops(ct[3]); [seq(ct[3][i],i=1..len)]; # A230092
-
Mathematica
nt = 100; (* number of terms to produce *) S[kmax_] := S[kmax] = Table[k + Total[IntegerDigits[k, 2]], {k, 0, kmax}] // Tally // Select[#, #[[2]] == 2&][[All, 1]]& // PadRight[#, nt]&; S[nt]; S[kmax = 2 nt]; While[S[kmax] =!= S[kmax/2], kmax *= 2]; S[kmax] (* Jean-François Alcover, Mar 04 2023 *)
Comments