cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230092 Numbers of the form k + wt(k) for exactly three distinct k, where wt(k) = A000120(k) is the binary weight of k.

Original entry on oeis.org

129, 134, 386, 391, 515, 518, 642, 647, 899, 904, 1028, 1030, 1154, 1159, 1411, 1416, 1540, 1543, 1667, 1672, 1924, 1929, 2178, 2183, 2435, 2440, 2564, 2567, 2691, 2696, 2948, 2953, 3077, 3079, 3203, 3208, 3460, 3465, 3589, 3592, 3716, 3721, 3973, 3978, 4226
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2013

Keywords

Comments

The positions of entries equal to 3 in A228085, or numbers that appear exactly thrice in A092391.
Numbers that can be expressed as the sum of distinct terms of the form 2^n+1, n=0,1,... in exactly three ways.

Crossrefs

Programs

  • Haskell
    a230092 n = a230092_list !! (n-1)
    a230092_list = filter ((== 3) . a228085) [1..]
    -- Reinhard Zumkeller, Oct 13 2013
  • Maple
    For Maple code see A230091.
  • Mathematica
    nt = 1000; (* number of terms to produce *)
    S[kmax_] := S[kmax] = Table[k + Total[IntegerDigits[k, 2]], {k, 0, kmax}] // Tally // Select[#, #[[2]] == 3&][[All, 1]]& // PadRight[#, nt]&;
    S[nt];
    S[kmax = 2 nt];
    While[S[kmax] =!= S[kmax/2], kmax *= 2];
    S[kmax] (* Jean-François Alcover, Mar 04 2023 *)