A230092 Numbers of the form k + wt(k) for exactly three distinct k, where wt(k) = A000120(k) is the binary weight of k.
129, 134, 386, 391, 515, 518, 642, 647, 899, 904, 1028, 1030, 1154, 1159, 1411, 1416, 1540, 1543, 1667, 1672, 1924, 1929, 2178, 2183, 2435, 2440, 2564, 2567, 2691, 2696, 2948, 2953, 3077, 3079, 3203, 3208, 3460, 3465, 3589, 3592, 3716, 3721, 3973, 3978, 4226
Offset: 1
Links
- Reinhard Zumkeller and Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
- Index entries for Colombian or self numbers and related sequences
Programs
-
Haskell
a230092 n = a230092_list !! (n-1) a230092_list = filter ((== 3) . a228085) [1..] -- Reinhard Zumkeller, Oct 13 2013
-
Maple
For Maple code see A230091.
-
Mathematica
nt = 1000; (* number of terms to produce *) S[kmax_] := S[kmax] = Table[k + Total[IntegerDigits[k, 2]], {k, 0, kmax}] // Tally // Select[#, #[[2]] == 3&][[All, 1]]& // PadRight[#, nt]&; S[nt]; S[kmax = 2 nt]; While[S[kmax] =!= S[kmax/2], kmax *= 2]; S[kmax] (* Jean-François Alcover, Mar 04 2023 *)
Comments