A230106 Number of m such that m + (product of nonzero digits of m) equals n.
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 3
Offset: 0
Programs
-
Maple
# Maple code for A063114, A230106, A063425, A096922 with(LinearAlgebra): read transforms; # to get digprod0 M:=1000; lis1:=Array(0..M); lis2:=Array(0..M); ctmax:=4; for i from 0 to ctmax do ct[i]:=Array(0..M); od: for n from 0 to M do m:=n+digprod0(n); lis1[n]:=m; if (m <= M) then lis2[m]:=lis2[m]+1; fi; od: t1:=[seq(lis1[i],i=0..M)]; # A063114 t2:=[seq(lis2[i],i=0..M)]; # A230106 COMPl(t1); # A063425 for i from 1 to M do h:=lis2[i]; if h <= ctmax then ct[h]:=[op(ct[h]),i]; fi; od: len:=nops(ct[0]); [seq(ct[0][i],i=1..len)]; # A063425 again len:=nops(ct[1]); [seq(ct[1][i],i=1..len)]; # A096922
Extensions
a(1) corrected by Zak Seidov, Oct 24 2013
Comments