A230110 Composite numbers m such that Sum_{i=1..k} (p_i/(p_i+1)) + Product_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of m (with multiplicity).
8, 10, 30, 63, 64, 512, 588, 720, 800, 1320, 3960, 4096, 5184, 5760, 6400, 7200, 21600, 27720, 27900, 32768, 35280, 41472, 46080, 51200, 70840, 84672, 92400, 95040, 105600, 151200, 188160, 262144, 331776, 368640, 376320, 409600, 504000, 518400, 576000, 640000
Offset: 1
Keywords
Examples
Prime factors of 3960 are 2^3, 3^2, 5 and 11. Sum_{i=1..7} (p(i)/(p(i)+1)) = 3*(2/(2+1)) + 2*(3/(3+1)) + 5/(5+1) + 11/(11+1) = 21/4. Product_{i=1..7} (p(i)/(p(i)-1)) = (2/(2+1))^3 * (3/(3-1))^2 * 5/(5-1) * 11/(11-1) = 99/4. Their sum is an integer: 21/4 + 99/4 = 30.
Links
- Robert Israel, Table of n, a(n) for n = 1..155
Programs
-
Maple
with(numtheory); P:=proc(i) local b,d,n,p; for n from 2 to i do p:=ifactors(n)[2]; b:=add(op(2,d)*op(1,d)/(op(1,d)+1),d=p)+mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p); if trunc(b)=b then print(n); fi; od; end: P(10^7);
Comments