cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230121 Number of ways to write n = x + y + z (0 < x <= y <= z) such that x*(x+1)/2 + y*(y+1)/2 + z*(z+1)/2 is a triangular number.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 1, 0, 2, 1, 2, 1, 2, 3, 2, 2, 6, 1, 3, 5, 1, 2, 3, 5, 2, 1, 3, 3, 3, 4, 3, 8, 2, 5, 11, 2, 5, 8, 4, 6, 4, 9, 4, 6, 5, 4, 6, 3, 8, 8, 5, 8, 10, 7, 7, 11, 8, 6, 7, 8, 5, 9, 7, 6, 8, 7, 7, 8, 13, 9, 11, 10, 7, 22, 9, 10, 13, 3, 6, 10, 8, 17, 12, 7, 9, 10, 16, 6, 18, 18, 10, 15, 9, 12, 20, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 10 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 except for n = 1, 2, 4, 5, 7, 12. Moreover, for each n = 20, 21, ... there are three distinct positive integers x, y and z with x + y + z = n such that x*(x+1)/2 + y*(y+1)/2 + z*(z+1)/2 is a triangular number.
(ii) A positive integer n cannot be written as x + y + z (x, y, z > 0) with x^2 + y^2 + z^2 a square if and only if n has the form 2^r*3^s or the form 2^r*7, where r and s are nonnegative integers.
(iii) Any integer n > 14 can be written as a + b + c + d, where a, b, c, d are positive integers with a^2 + b^2 + c^2 + d^2 a square. If n > 20 is not among 22, 28, 30, 38, 44, 60, then we may require additionally that a, b, c, d are pairwise distinct.
(iv) For each integer n > 50 not equal to 71, there are positive integers a, b, c, d with a + b + c + d = n such that both a^2 + b^2 and c^2 + d^2 are squares.
Part (ii) and the first assertion in part (iii) were confirmed by Chao Huang and Zhi-Wei Sun in 2021. - Zhi-Wei Sun, May 09 2021

Examples

			a(16) = 1 since 16 = 3 + 6 + 7 and 3*4/2 + 6*7/2 + 7*8/2 = 55 = 10*11/2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    T[n_]:=n(n+1)/2
    a[n_]:=Sum[If[SQ[8(T[i]+T[j]+T[n-i-j])+1],1,0],{i,1,n/3},{j,i,(n-i)/2}]
    Table[a[n],{n,1,100}]
  • PARI
    a(n)=my(t=(n+1)*n/2,s);sum(x=1,n\3,s=t-n--*x;sum(y=x,n\2,is_A000217(s-(n-y)*y))) \\ - M. F. Hasler, Oct 11 2013