cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A230747 Number of ways to write n = x + y + 2*z with 0 < x <= y and z > 0 such that x^2 + y^2 + 2*z^2 is a square.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 4, 0, 2, 1, 3, 1, 1, 1, 1, 4, 4, 3, 1, 2, 3, 1, 8, 2, 1, 3, 4, 4, 3, 6, 3, 2, 4, 3, 3, 5, 3, 2, 7, 7, 8, 3, 7, 5, 6, 6, 1, 4, 4, 6, 8, 7, 2, 6, 14, 8, 6, 5, 7, 4, 10, 6, 4, 5, 7, 7, 6, 10, 10, 4, 14, 11, 6, 8, 11, 8, 6, 6, 3, 8, 10, 11, 9, 7, 6, 13, 19, 4, 11, 8, 16
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 29 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 17.
Note that a(4*k) > 0 for all k > 0 since 4*k = k + k + 2*k and k^2 + k^2 + 2*k^2 = (2*k)^2.
See also A230121 for a related conjecture.
The conjecture was confirmed by Chao Haung and Zhi-Wei Sun in 2021. - Zhi-Wei Sun, May 09 2021

Examples

			a(9) = 1 since 9 = 1 + 4 + 2*2 with 1^2 + 4^2 + 2*2^2 = 5^2.
a(21) = 1 since 21 = 5 + 8 + 2*4 with 5^2 + 8^2 + 2*4^2 = 11^2.
a(34) = 1 since 34 = 7 + 25 + 2*1 with 7^2 + 25^2 + 2*1^2 = 26^2.
a(56) = 1 since 56 = 14 + 14 + 2*14 with 14^2 + 14^2 + 2*14^2 = 28^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    a[n_]:=Sum[If[SQ[2i^2+j^2+(n-2i-j)^2],1,0],{i,1,(n-2)/2},{j,1,(n-2i)/2}]
    Table[a[n],{n,1,100}]

A229166 Number of ordered ways to write n = x*(x+1)/2 + y with y*(y+1)/2 + 1 prime, where x and y are nonnegative integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 2, 2, 2, 3, 2, 3, 3, 1, 2, 3, 3, 3, 2, 2, 5, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 3, 1, 3, 2, 3, 2, 2, 4, 3, 1, 3, 5, 2, 3, 4, 5, 2, 4, 2, 3, 3, 2, 3, 5, 4, 2, 4, 1, 4, 3, 5, 4, 3, 5, 3, 4, 3, 3, 6, 4, 2, 5, 4, 3, 4, 5, 5, 2, 4, 4, 2, 3, 6, 4, 2, 3, 5, 4, 3, 5, 1, 4, 3, 6, 3, 5, 7, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 15 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Moreover, if n > 0 is not among 1, 3, 60, then there are positive integers x and y with x*(x+1)/2 + y = n such that y*(y+1)/2 + 1 is prime.

Examples

			a(6) = 1 since 6 = 2*3/2 + 3 with 3*4/2 + 1 = 7 prime.
a(60) = 1 since 60 = 0*1/2 + 60 with 60*61/2 + 1 = 1831 prime.
		

Crossrefs

Programs

  • Mathematica
    T[n_]:=n(n+1)/2
    a[n_]:=Sum[If[PrimeQ[T[n-T[i]]+1],1,0],{i,0,(Sqrt[8n+1]-1)/2}]
    Table[a[n],{n,1,100}]

A340274 Number of ways to write n as x + y + z with x, y, z positive integers such that 3*x^2*y^2 + 5*y^2*z^2 + 8*z^2*x^2 is a square.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 4, 2, 5, 2, 1, 2, 2, 2, 2, 4, 2, 4, 3, 3, 3, 4, 5, 2, 3, 5, 5, 4, 4, 2, 4, 4, 5, 3, 4, 3, 6, 3, 2, 5, 2, 2, 7, 7, 1, 3, 6, 4, 4, 3, 3, 6, 2, 5, 5, 3, 6, 5, 4, 6, 6, 6, 3, 6, 6, 4, 5, 6, 2, 6, 3, 5, 4, 5, 3, 5, 12, 4, 4, 5, 1, 6, 6, 7, 9, 3, 3, 6, 5, 6, 7, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 24 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 2.
We have verified a(n) > 0 for all n = 3..10000. The conjecture holds if a(p) > 0 for every odd prime p. For any n > 0 we have a(3*n) > 0, since 3*n = n + n + n and 3 + 5 + 8 = 4^2.
It seems that a(n) = 1 only for n = 3..8, 10, 11, 19, 53, 89, 127, 178, 257, 461.
See also A343862 for similar conjectures.
Conjecture 1 holds for all n < 2^15. Note a(1823) = 1. - Martin Ehrenstein, May 03 2021

Examples

			a(4) = 1 with 4 = 2 + 1 + 1 and 3*2^2*1^2 + 5*1^2*1^2 + 8*1^2*2^2 = 7^2.
a(19) = 1 with 19 = 9 + 9 + 1 and 3*9^2*9^2 + 5*9^2*1^2 + 8*1^2*9^2 = 144^2.
a(53) = 1 with 53 = 23 + 7 + 23 and 3*23^2*7^2 + 5*7^2*23^2 + 8*23^2*23^2 = 1564^2.
a(89) = 1 with 89 = 2 + 58 + 29 and 3*2^2*58^2 + 5*58^2*29^2 + 8*29^2*2^2 = 3770^2.
a(257) = 1 with 257 = 11 + 164 + 82 and 3*11^2*164^2 + 5*164^2*82^2 + 8*82^2*11^2 = 30340^2.
a(461) = 1 with 461 = 186 + 165 + 110 and 3*186^2*165^2 + 5*165^2*110^2 + 8*110^2*186^2 = 88440^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[3x^2*y^2+(n-x-y)^2*(5*y^2+8*x^2)],r=r+1],{x,1,n-2},{y,1,n-1-x}];tab=Append[tab,r],{n,1,100}];Print[tab]

A343862 Number of ways to write n as x + y + z with x, y, z positive integers such that x^2*y^2 + 5*y^2*z^2 + 10*z^2*x^2 is a square.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 1, 1, 4, 2, 4, 2, 2, 5, 5, 3, 3, 2, 6, 4, 3, 3, 6, 6, 5, 2, 6, 4, 10, 3, 6, 4, 6, 6, 8, 5, 6, 4, 9, 7, 6, 3, 7, 9, 5, 5, 15, 5, 12, 11, 10, 5, 6, 7, 10, 8, 9, 7, 15, 7, 6, 7, 10, 10, 7, 9, 10, 10, 12, 4, 15, 9, 9, 11, 9, 7, 12, 11, 15, 8, 9, 7, 12, 10, 3, 9, 11, 11, 19, 12, 12, 9, 10, 6, 23, 11, 6, 10, 18
Offset: 1

Views

Author

Zhi-Wei Sun, May 02 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 2.
We have verified a(n) > 0 for all n = 3..10000. Conjecture 1 holds if a(p) > 0 for each odd prime p. For any n > 0 we have a(3*n) > 0 since 3*n = n + n + n and 1 + 5 + 10 = 4^2.
See also A340274 for a similar conjecture.
Conjecture 2: There are infinitely many triples (a,b,c) of positive integers such that each n = 3,4,... can be written as x + y + z with x,y,z positive integers and a*x^2*y^2 + b*y^2*z^2 + c*z^2*x^2 a square.
Such triple candidates include (21,19,9), (23,17,9), (24,16,9), (25,14,10), (29,19,16), (33,27,21), (35,9,5), (37,32,31) etc.
Conjecture 1 holds for all n < 2^15. - Martin Ehrenstein, May 02 2021

Examples

			a(4) = 1 with 4 = 2 + 1 + 1 and 2^2*1^2 + 5*1^2*1^2 + 10*1^2*2^2 = 7^2.
a(5) = 1 with 5 = 1 + 3 + 1 and 1^2*3^2 + 5*3^2*1^2 + 10*1^1*1^2 = 8^2.
a(8) = 1 with 8 = 4 + 2 + 2 and 4^2*2^2 + 5*2^2*2^2 + 10*2^2*4^2 = 28^2.
a(9) = 1 with 9 = 3 + 3 + 3 and 3^2*3^2 + 5*3^2*3^2 + 10*3^2*3^2 = 36^2.
a(19) = 2. We have 19 = 4 + 5 + 10 with 4^2*5^2 + 5*5^2*10^2 + 10*10^2*4^2 = 170^2, and 19 = 4 + 13 + 2 with 4^2*13^2 + 5*13^2*2^2 + 10*2^2*4^2 = 82^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[x^2*y^2+(n-x-y)^2*(5*y^2+10*x^2)],r=r+1],{x,1,n-2},{y,1,n-1-x}];tab=Append[tab,r],{n,1,100}];Print[tab]

A230596 Number of ways to write n = x + y + z with 0 < x <= y <= z such that x*y*z is a triangular number, and that x is a triangular number of the form (p^2 - 1)/8 with p an odd prime.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 1, 2, 2, 4, 1, 1, 2, 3, 2, 5, 1, 3, 3, 3, 3, 2, 8, 1, 4, 2, 2, 3, 5, 1, 3, 6, 3, 5, 3, 1, 6, 4, 5, 3, 3, 1, 6, 6, 3, 4, 2, 4, 3, 8, 3, 3, 8, 5, 2, 4, 4, 6, 6, 3, 6, 2, 3, 12, 7, 1, 10, 7, 3, 4, 5, 3, 7, 8, 2, 5, 4, 6, 4, 2, 5, 6, 6, 4, 4, 13, 6, 9, 6, 4, 10, 7, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 24 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 except for n = 1, 2, 4, 7.
(ii) For any integer n > 7, there are positive integers x, y, z with x + y + z = n such that x*y*z is a triangular number and x is among 1, 2, 3, 4, 5, 6.
Note that a(3k) and a(3k+2) are positive for every k = 1, 2, 3, .... In fact, 3k = 1 + k + (2k-1) with 1*k*(2k-1) = 2k*(2k-1)/2 a triangular number, and 3k+2 = 1 + k + (2k+1) with 1*k*(2k+1) = 2k(2k+1)/2 a triangular number.

Examples

			a(10) = 1 since 10 = 3 + 3 + 4, and 3 = (5^2-1)/8 with 5 an odd prime, and 3*3*4 = 8*9/2 is a triangular number.
a(31) = 1 since 31 = 3 + 11 + 17, and 3 = (5^2-1)/8 with 5 an odd prime, and 3*11*17 = 33*34/2 is a triangular number.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=IntegerQ[Sqrt[8n+1]]
    a[n_]:=Sum[If[TQ[(Prime[i]^2-1)/8*y*(n-(Prime[i]^2-1)/8-y)],1,0],{i,2,PrimePi[Sqrt[8n/3+1]]},{y,(Prime[i]^2-1)/8,(n-(Prime[i]^2-1)/8)/2}]
    Table[a[n],{n,1,100}]

A227877 Number of ways to write n = x + y + z (x, y, z > 0) such that x*y and x*z are triangular numbers, and 6*y-1 and 6*z+1 are both prime.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 2, 3, 3, 7, 3, 6, 3, 3, 2, 3, 7, 6, 7, 5, 4, 5, 10, 2, 10, 4, 5, 2, 2, 9, 5, 9, 2, 4, 3, 4, 5, 7, 5, 11, 12, 5, 8, 11, 12, 5, 11, 3, 7, 11, 4, 10, 6, 2, 9, 11, 8, 7, 9, 8, 9, 4, 3, 4, 10, 6, 9, 15, 9, 17, 3, 3, 8, 12, 10, 5, 1, 7, 9, 16, 8, 17, 6, 8, 16, 6, 8, 8, 10, 1, 6, 4, 8, 5, 23, 11, 2, 9, 6, 14
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 25 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 4.
For n = 4*k - 1, we have n = (2k-1) + k + k with (2k-1)*k = 2k*(2k-1)/2 a triangular number. For n = 4*k + 1, we have n = (2k+1) + k + k with (2k+1)*k = 2k*(2k+1)/2 a triangular number. For n = 4*k + 2, we have n = (2k+1) + k + (k+1), and (2k+1)*k = 2k*(2k+1)/2 and (2k+1)*(k+1) = (2k+1)(2k+2)/2 are both triangular numbers.
For n = 5*k, we have n = k + (2k-1) + (2k+1), and k*(2k-1) = 2k*(2k-1)/2 and k*(2k+1) = 2k*(2k+1)/2 are both triangular numbers. For n = 5*k - 2, we have n = k + (2k-1) + (2k-1) with k*(2k-1) = 2k*(2k-1)/2 a triangular number. For n = 5*k + 2, we have n = k + (2k+1) + (2k+1) with k*(2k+1) = 2k*(2k+1)/2 a triangular number.

Examples

			a(77) = 1 since 77 = 1 + 10 + 66, and 1*10 = 4*5/2 and 1*66 = 11*12/2 are triangular numbers, and 6*10 - 1 = 59 and 6*66 + 1 = 397 are both prime.
a(90) = 1 since 90 = 45 + 22 + 23, and 45*22 = 44*45/2 and 45*23 = 45*46/2 are triangular numbers, and 6*22 - 1 = 131 and 6*23 + 1 = 139 are both prime.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=IntegerQ[Sqrt[8n+1]]
    a[n_]:=Sum[If[PrimeQ[6j-1]&&PrimeQ[6(n-i-j)+1]&&TQ[i*j]&&TQ[i(n-i-j)],1,0],{i,1,n-2},{j,1,n-1-i}]
    Table[a[n],{n,1,100}]

A230451 Number of ways to write n = x + y + z (x, y, z > 0) such that 2*x + 1, 2*y + 3, 2*z + 5 are all prime and x*y*z is a triangular number.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 4, 3, 1, 7, 3, 2, 3, 7, 4, 5, 6, 3, 4, 8, 5, 8, 3, 6, 8, 9, 9, 5, 12, 2, 11, 4, 4, 4, 13, 5, 9, 13, 8, 14, 8, 3, 15, 7, 8, 10, 6, 5, 17, 15, 4, 6, 9, 8, 10, 15, 9, 7, 15, 11, 5, 6, 11, 14, 14, 7, 11, 3, 12, 23, 16, 5, 20, 14, 4, 9, 14, 5, 19, 19, 4, 3, 12, 7, 16, 5, 12, 6, 11, 12, 12, 23, 14, 23, 12, 5, 17, 14, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 19 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 except for n = 1, 2, 4, 7.
(ii) Any integer n > 7 can be written as x + y + z (x, y, z > 0) such that 2*x + 1, 2*y + 1, 2*x*y + 1 are primes and x*y*z is a triangular number.
(iii) Each integer n > 4 not equal to 7 or 14 can be expressed as p + q + r (p, q, r > 0) with p and 2*q + 1 both primes, and p*q*r a triangular number.
(iv) Any integer n > 6 not among 16, 20, 60 can be written as x + y + z (x, y, z > 0) such that x*y + x*z + y*z is a triangular number.
Part (i) is stronger than Goldbach's weak conjecture which was finally proved by H. Helfgott in 2013.
See also A227877 and A230596 for some related conjectures.

Examples

			a(6) = 3 since 6 = 1 + 2 + 3 = 2 + 1 + 3 = 3 + 2 + 1, and 2*1 + 1 = 3, 2*2 + 3 = 7, 2*3 + 5 = 11, 2*2 + 1 = 5, 2*1 + 3 = 5, 2*3 + 1 = 7, 2*1 + 5 = 7 are all prime.
a(10) = 1 since 10 = 3 + 4 + 3, and 2*3 + 1 = 7, 2*4 + 3 = 11, 2*3 + 5 = 11 are all prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    TQ[n_]:=SQ[8n+1]
    a[n_]:=Sum[If[PrimeQ[2i+1]&&PrimeQ[2j+3]&&PrimeQ[2(n-i-j)+5]&&TQ[i*j(n-i-j)],1,0],{i,1,n-2},{j,1,n-1-i}]
    Table[a[n],{n,1,100}]

A231168 Number of ways to write n = x + y + z (x, y, z > 0) such that x^2 + y^2 + z^2 + z is a square, and 6*x + 1, 6*y - 1, 6*z -1 are all prime.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 2, 2, 2, 1, 3, 2, 5, 1, 4, 3, 2, 3, 1, 1, 4, 2, 5, 3, 3, 4, 4, 8, 2, 3, 8, 2, 4, 3, 4, 8, 7, 2, 2, 8, 3, 8, 6, 1, 6, 8, 4, 1, 9, 2, 4, 10, 6, 1, 7, 11, 7, 10, 2, 6, 9, 3, 6, 3, 6, 6, 6, 8, 4, 8, 4, 4, 9, 2, 11, 4, 9, 6, 1, 4, 5, 5, 10, 7, 5, 6, 6, 7, 5, 8, 17, 8, 5, 2, 7, 8, 11, 10, 6, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 04 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5.

Examples

			a(19) = 1 since 19 = 13 + 5 + 1 with 13^2 + 5^2 + 1^2 + 1 = 14^2, and 6*13 + 1 = 79, 6*5 - 1 = 29, 6*1 - 1 = 5 are all prime.
a(444) = 1 since 444 = 76 + 28 + 340 with 76^2 + 28^2 + 340^2 + 340 = 350^2, and 6*76 + 1 = 457, 6*28 - 1 = 167, 6*340 - 1 = 2039 are all prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    a[n_]:=Sum[If[PrimeQ[6i+1]&&PrimeQ[6j-1]&&PrimeQ[6(n-i-j)-1]&&SQ[i^2+j^2+(n-i-j)^2+(n-i-j)],1,0],{i,1,n-2},{j,1,n-1-i}]
    Table[a[n],{n,1,100}]

A343897 Number of ways to write n as 2*x + y + z with x,y,z positive integers such that 16*x^2*y^2 + 19*y^2*z^2 + 29*z^2*x^2 is a square.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 2, 1, 3, 1, 3, 1, 5, 2, 2, 6, 1, 1, 5, 5, 6, 2, 2, 4, 2, 4, 5, 6, 3, 2, 3, 2, 5, 2, 7, 10, 4, 1, 3, 3, 10, 9, 2, 5, 5, 10, 6, 7, 6, 7, 8, 8, 4, 7, 4, 5, 8, 2, 4, 4, 13, 9, 5, 6, 10, 11, 6, 11, 6, 6, 5, 4, 4, 10, 9, 8, 8, 8, 8, 9, 16, 5, 5, 6, 4, 7, 3, 12, 7, 11, 13
Offset: 1

Views

Author

Zhi-Wei Sun, May 03 2021

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified a(n) > 0 for all n = 4..10000. The conjecture holds if a(p) > 0 for each odd prime p.
It seems that a(n) = 1 only for n = 4..9, 13, 17, 19, 21, 26, 27, 47.

Examples

			a(4) = 1 with 4 = 2*1 + 1 + 1 and 16*1^2*1^2 + 19*1^2*1^2 + 29*1^2*1^2 = 8^2.
a(6) = 1 with 6 = 2*1 + 2 + 2 and 16*1^2*2^2 + 19*2^2*2^2 + 29*2^2*1^2 = 22^2.
a(9) = 1 with 9 = 2*2 + 4 + 1 and 16*2^2*4^2 + 19*4^2*1^2 + 29*1^2*2^2 = 38^2.
a(13) = 1 with 13 = 2*5 + 2 + 1 and 16*5^2*2^2 + 19*2^2*1^2 + 29*1^2*5^2 = 49^2.
a(19) = 1 with 19 = 2*2 + 14 + 1 and 16*2^2*14^2 + 19*14^2*1^2 + 29*1^2*2^2 = 128^2.
a(47) = 1 with 47 = 2*13 + 13 + 8 and 16*13^2*13^2 + 19*13^2*8^2 + 29*8^2*13^2 = 988^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[16(x*y)^2+(n-2x-y)^2*(19*y^2+29x^2)],r=r+1],{x,1,(n-2)/2},{y,1,n-1-2x}];tab=Append[tab,r],{n,1,100}];Print[tab]

A343950 Number of ways to write n as x + y + z with x^2 + 4*y^2 + 5*z^2 a square, where x,y,z are positive integers with y or z a positive power of two.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 3, 1, 2, 2, 2, 3, 1, 4, 3, 2, 3, 3, 4, 4, 2, 1, 4, 6, 4, 2, 3, 12, 5, 3, 5, 8, 4, 5, 5, 8, 4, 7, 4, 4, 4, 7, 5, 5, 1, 4, 6, 5, 6, 6, 10, 7, 4, 9, 5, 10, 16, 7, 7, 9, 6, 5, 5, 14, 8, 6, 6, 3, 7, 1, 5, 4, 10, 5, 7, 10, 8, 13, 10, 3, 4, 8, 5, 12, 7, 20, 9, 12, 5, 8, 1, 9, 4, 8, 9, 8, 7, 4, 10
Offset: 1

Views

Author

Zhi-Wei Sun, May 05 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 7.
We have verified a(n) > 0 for all n = 8..50000. Clearly, a(2*n) > 0 if a(n) > 0.
Conjecture 2: For any integer n > 7, we can write n as x + y + z with x,y,z positive integers such that x^2 + 2*y^2 + 3*z^2 is a square.
Conjecture 3: For any integer n > 4, we can write n as x + y + z with x,y,z positive integers such that 3*x^2 + 4*y^2 + 5*z^2 (or x^2 + 3*y^2 + 5*z^2) is a square.

Examples

			a(4) = 1, and 4 = 1 + 1 + 2 with 1^2 + 4*1^2 + 5*2^2 = 5^2.
a(5) = 1, and 5 = 2 + 2 + 1 with 2^2 + 4*2^2 + 5*1^2 = 5^2.
a(9) = 1, and 9 = 4 + 1 + 4 with 4^2 + 4*1^2 + 5*4^2 = 10^2.
a(14) = 1, and 14 = 7 + 5 + 2 with 7^2 + 4*5^2 + 5*2^2 = 13^2.
a(23) = 1, and 23 = 7 + 8 + 8 with 7^2 + 4*8^2 + 5*8^2 = 25^2.
a(46) = 1, and 46 = 14 + 16 + 16 with 14^2 + 4*16^2 + 5*16^2 = 50^2.
a(71) = 1, and 71 = 42 + 8 + 21 with 42^2 + 4*8^2 + 5*21^2 = 65^2.
a(92) = 1, and 92 = 28 + 32 + 32 with 28^2 + 4*32^2 + 5*32^2 = 100^2.
a(142) = 1, and 142 = 84 + 16 + 42 with 84^2 + 4*16^2 + 5*42^2 = 130^2.
		

Crossrefs

Programs

  • Mathematica
    PowQ[n_]:=PowQ[n]=n>1&&IntegerQ[Log[2,n]];
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[(PowQ[y]||PowQ[n-x-y])&&SQ[x^2+4*y^2+5*(n-x-y)^2],r=r+1],{x,1,n-3},{y,1,n-1-x}];tab=Append[tab,r],{n,1,100}];Print[tab]
Showing 1-10 of 11 results. Next