cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A230191 Decimal expansion of log( 2^(1/2)*3^(1/3)*5^(1/5) / 30^(1/30) ).

Original entry on oeis.org

9, 2, 1, 2, 9, 2, 0, 2, 2, 9, 3, 4, 0, 9, 0, 7, 8, 0, 9, 1, 3, 4, 0, 8, 4, 4, 9, 9, 6, 1, 6, 0, 4, 7, 1, 6, 4, 1, 7, 0, 8, 0, 7, 8, 9, 0, 9, 3, 0, 3, 0, 2, 4, 1, 0, 9, 5, 5, 0, 0, 2, 8, 6, 4, 3, 3, 8, 6, 1, 8, 0, 9, 5, 0, 2, 7, 1, 6, 5, 1, 8, 1, 1, 6, 5, 0, 9, 9, 2, 5, 3, 9, 1, 3, 1, 1, 6, 1, 5, 9, 5, 5, 9, 8, 6
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 11 2013

Keywords

Comments

Pafnuty Lvovich Chebyshev proved in 1852 that A*x/log(x) < pi(x) < B*x/log(x) holds for all x >= x(0) with some x(0) sufficiently large, where A is the constant given above and B = 6*A/5.
Nazardonyavi references this constant (but with a typo in the definition). - Charles R Greathouse IV, Nov 20 2018

Examples

			0.921292022934090780913408449961604716417080789093030241095500286433861...
		

References

  • Harold M. Edwards, Riemann's zeta function, Dover Publications, Inc., New York, 2001, pp. 281-284.
  • Kolmogorov, A.N., Yushkevich, A.P. (Eds.), Mathematics of the 19th Century: Mathematical Logic, Algebra, Number Theory, Probability Theory, Birkhaeser-Verlag, 1992. See p. 185. - N. J. A. Sloane, Jan 20 2019
  • Sadegh Nazardonyavi, Improved explicit bounds for some functions of prime numbers, Functiones et Approximatio Commentarii Mathematici 58:1 (2018), pp. 7-22.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 164.

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Log[6^9*10^5]/30, 10, 100]] (* Paolo Xausa, Apr 01 2024 *)
  • PARI
    default(realprecision, 105); x=log(6^9*10^5)/3; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));

Formula

Equals log(6^9*10^5)/30.
Equals log(2)/2 + log(3)/3 + log(5)/5 - log(30)/30 = (5/6)*A230192.

Extensions

Better definition from N. J. A. Sloane, Jan 20 2019
Showing 1-1 of 1 results.