A230195 Integer areas A of the triangles such that A and the sides are integers, and the length of the inradius is a prime number.
24, 30, 36, 42, 48, 54, 60, 66, 84, 96, 114, 120, 126, 150, 156, 198, 210, 270, 294, 330, 336, 390, 420, 462, 504, 510, 546, 570, 630, 714, 726, 756, 810, 840, 924, 930, 1008, 1014, 1056, 1134, 1386, 1428, 1554, 1638, 1680, 1716, 1734, 1848, 1890, 1950, 2016
Offset: 1
Keywords
Examples
24 is in the sequence because for (a, b, c) = (6, 8, 10) => s =(6 + 8 + 10)/2 = 12; A = sqrt(12*(12-6)*(12-8)*(12-10)) = sqrt(576)= 24; r = A/s = 2 is prime.
Links
- Mohammad K. Azarian, Solution of problem 125: Circumradius and Inradius, Math Horizons, Vol. 16, No. 2 (Nov. 2008), p. 32.
Crossrefs
Cf. A228383.
Programs
-
Mathematica
nn = 1500; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && PrimeQ[Sqrt[area2]/s], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments