A230205 Expansion of phi(-x) * f(x^1, x^7) in powers of x where phi(), f() are Ramanujan theta functions.
1, -1, -2, 0, 2, 2, 0, 1, -2, -2, -1, 0, 0, 0, 2, 0, 0, 2, 0, -2, 0, 0, 1, 0, 0, -2, 2, 1, -2, 0, 0, 0, -2, 0, 0, -2, 0, 2, 2, 0, 0, 0, 0, 4, 0, 1, 0, -2, 0, 0, -2, 0, -1, -2, -2, 0, 0, 0, 2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, -2, 0, 0, 0, 2, 0, -1, -4, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 - x - 2*x^2 + 2*x^4 + 2*x^5 + x^7 - 2*x^8 - 2*x^9 - x^10 + ... G.f. = q^9 - q^25 - 2*q^41 + 2*q^73 + 2*q^89 + q^121 - 2*q^137 - 2*q^153 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A030204.
Programs
-
Mathematica
a[ n_]:= SeriesCoefficient[EllipticTheta[4,0,q]*QPochhammer[-q^1,q^8]* QPochhammer[-q^7,q^8]*QPochhammer[q^8], {q, 0, n}];
-
PARI
{a(n) = local(m, j); if( n<0, 0, m = 16*n + 9; sum( k=0, sqrtint(m \ 4), if( issquare(m - 16*k^2, &j), if( k==0, 1, 2) * (-1)^k * ((j%8)==3 || (j%8==5)))))}
Formula
Euler transform of period 16 sequence [ -1, -2, -2, -1, -2, -1, -1, -2, -1, -1, -2, -1, -2, -2, -1, -2, ...].
a(n) = - A030204(2*n + 1).
Comments