A230241 Number of ways to write n = p + q with p, 3*p - 10 and (p-1)*q - 1 all prime, where q is a positive integer.
0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 2, 4, 1, 4, 5, 1, 6, 2, 3, 6, 3, 1, 2, 6, 2, 3, 7, 3, 6, 4, 2, 4, 2, 5, 6, 1, 2, 6, 5, 4, 6, 8, 3, 5, 10, 3, 6, 6, 2, 9, 4, 2, 4, 6, 3, 4, 11, 1, 6, 7, 2, 9, 7, 3, 5, 8, 5, 9, 6, 4, 3, 6, 3, 6, 4, 3, 10, 9, 2, 13, 2, 5, 8, 10, 3, 3, 11, 1, 10, 11, 3, 9, 4, 6, 11
Offset: 1
Keywords
Examples
a(9) = 1 since 9 = 7 + 2 with 7, 3*7-10 = 11, (7-1)*2-1 = 11 all prime. a(27) = 1 since 27 = 13 + 14, and the three numbers 13, 3*13-10 = 29, (13-1)*14-1 = 167 are prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588 [math.NT], 2012-2017.
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[3Prime[i]-10]&&PrimeQ[(Prime[i]-1)(n-Prime[i])-1],1,0],{i,1,PrimePi[n-1]}] Table[a[n],{n,1,100}]
Comments