cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230351 Number of ordered ways to write n = p + q (q > 0) with p, 2*p^2 - 1 and 2*q^2 - 1 all prime.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 1, 1, 3, 3, 2, 1, 4, 3, 4, 2, 4, 3, 4, 5, 4, 2, 3, 6, 3, 3, 3, 5, 2, 3, 3, 3, 1, 2, 4, 2, 2, 3, 3, 1, 5, 2, 3, 3, 7, 3, 5, 4, 6, 3, 5, 6, 5, 5, 3, 6, 2, 5, 5, 3, 4, 5, 6, 2, 6, 6, 5, 1, 5, 3, 3, 3, 2, 2, 5, 6, 5, 1, 5, 6, 4, 4, 6, 6, 1, 5, 5, 4, 3, 4, 3, 3, 6, 5, 4, 1, 5, 7, 2, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 16 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified this for n up to 2*10^7.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Aug 07 2023

Examples

			a(7) = 1 since 7 = 3 + 4 with 3, 2*3^2 - 1 = 17, 2*4^2 - 1 = 31 all prime.
a(40) = 1 since 40 = 2 + 38, and 2, 2*2^2 - 1 = 7 , 2*38^2 - 1 = 2887 are all prime.
a(68) = 1 since 68 = 43 + 25, and all the three numbers 43, 2*43^2 - 1 = 3697 and 2*25^2 - 1 = 1249 are prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2Prime[i]^2-1]&&PrimeQ[2(n-Prime[i])^2-1],1,0],{i,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A229166 Number of ordered ways to write n = x*(x+1)/2 + y with y*(y+1)/2 + 1 prime, where x and y are nonnegative integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 2, 2, 2, 3, 2, 3, 3, 1, 2, 3, 3, 3, 2, 2, 5, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 3, 1, 3, 2, 3, 2, 2, 4, 3, 1, 3, 5, 2, 3, 4, 5, 2, 4, 2, 3, 3, 2, 3, 5, 4, 2, 4, 1, 4, 3, 5, 4, 3, 5, 3, 4, 3, 3, 6, 4, 2, 5, 4, 3, 4, 5, 5, 2, 4, 4, 2, 3, 6, 4, 2, 3, 5, 4, 3, 5, 1, 4, 3, 6, 3, 5, 7, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 15 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Moreover, if n > 0 is not among 1, 3, 60, then there are positive integers x and y with x*(x+1)/2 + y = n such that y*(y+1)/2 + 1 is prime.

Examples

			a(6) = 1 since 6 = 2*3/2 + 3 with 3*4/2 + 1 = 7 prime.
a(60) = 1 since 60 = 0*1/2 + 60 with 60*61/2 + 1 = 1831 prime.
		

Crossrefs

Programs

  • Mathematica
    T[n_]:=n(n+1)/2
    a[n_]:=Sum[If[PrimeQ[T[n-T[i]]+1],1,0],{i,0,(Sqrt[8n+1]-1)/2}]
    Table[a[n],{n,1,100}]

A230254 Number of ways to write n = p + q with p and (p+1)*q/2 + 1 both prime.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 3, 2, 1, 4, 1, 2, 5, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 2, 8, 1, 6, 6, 2, 3, 2, 3, 5, 5, 5, 1, 5, 3, 7, 5, 1, 7, 10, 1, 3, 4, 8, 5, 3, 3, 3, 5, 8, 4, 10, 2, 9, 3, 3, 4, 7, 5, 9, 5, 4, 3, 15, 4, 12, 7, 4, 5, 9, 3, 11, 4, 6, 5, 9, 5, 6, 12, 6, 5, 8, 1, 4, 8, 5, 13, 9, 2, 6, 5, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified this for n up to 10^8.
We also have some similar conjectures, for example, any integer n > 3 not equal to 17 or 66 can be written as p + q with p and (p+1)*q/2 - 1 both prime.

Examples

			a(15) = 1 since 15 = 5 + 10 with 5 and (5+1)*10/2+1 = 31 both prime.
a(30) = 1 since 30 = 2 + 28 with 2 and (2+1)*28/2+1 = 43 both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[(Prime[i]+1)(n-Prime[i])/2+1],1,0],{i,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A230261 Number of ways to write 2*n - 1 = p + q with p, p + 6 and q^4 + 1 all prime, where q is a positive integer.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 3, 3, 4, 4, 3, 3, 4, 1, 5, 4, 3, 5, 5, 5, 4, 6, 4, 5, 5, 3, 3, 5, 4, 4, 2, 6, 8, 5, 4, 6, 7, 5, 5, 7, 6, 5, 7, 4, 6, 6, 3, 6, 5, 7, 6, 4, 6, 7, 6, 2, 7, 6, 2, 5, 5, 3, 7, 7, 5, 7, 9, 6, 7, 4, 6, 6, 4, 3, 9, 7, 4, 9, 9, 6, 5, 10, 8, 5, 9, 6, 7, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3. Also, any odd number greater than 6 can be written as p + q (q > 0) with p, p + 6 and q^2 + 1 all prime.
(ii) Any integer n > 1 can be written as x + y (x, y > 0) with x^4 + 1 and y^2 + y + 1 both prime.
(iii) Each integer n > 2 can be expressed as x + y (x, y > 0) with 4*x^2 + 3 and 4*y^2 -3 both prime.
Either of parts (i) and (ii) implies that there are infinitely many primes of the form x^4 + 1.

Examples

			a(6) = 2 since 2*6-1 = 5 + 6 = 7 + 4, and 5, 5+6 = 11, 7, 7+6 = 13, 6^4+1 = 1297 and 4^4+1 = 257 are all prime.
a(25) = 1 since 2*25-1 = 47 + 2, and 47, 47+6 = 53, 2^4+1 = 17 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[Prime[i]+6]&&PrimeQ[(2n-1-Prime[i])^4+1],1,0],{i,1,PrimePi[2n-2]}]
    Table[a[n],{n,1,100}]
  • PARI
    a(n)=my(s,p=5,q=7);forprime(r=11,2*n+4,if(r-p==6&&isprime((2*n-1-p)^4+1),s++); if(r-q==6&&isprime((2*n-1-q)^4+1),s++); p=q;q=r);s \\ Charles R Greathouse IV, Oct 14 2013

A230516 Number of ways to write n = a + b + c with 0 < a <= b <= c such that {a^2+a-1, a^2+a+1}, {b^2+b-1, b^2+b+1}, {c^2+c-1, c^2+c+1} are twin prime pairs.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 4, 4, 3, 5, 5, 4, 6, 6, 4, 4, 4, 3, 3, 4, 1, 2, 3, 4, 4, 5, 6, 6, 7, 6, 6, 7, 6, 4, 3, 5, 4, 4, 3, 5, 5, 6, 8, 6, 7, 11, 7, 6, 9, 8, 4, 8, 6, 5, 7, 5, 4, 8, 10, 5, 7, 9, 6, 10, 6, 7, 7, 7, 4, 4, 8, 5, 5, 4, 6, 9, 7, 7, 7, 7, 7, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 22 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 22 2023
This implies that there are infinitely many twin prime pairs of the form {x^2 + x - 1, x^2 + x + 1}.
See also A230514 for a similar conjecture.

Examples

			a(8) = 1 since 8 = 2 + 3 + 3, and {2*3 - 1, 2*3 + 1} = {5, 7} and {3*4 - 1, 3*4 + 1} = {11, 13} are twin prime pairs.
a(39) = 1 since 39 = 3 + 15 + 21, and {3*4 - 1, 3*4 + 1} = {11, 13}, {15*16 - 1, 15*16 + 1} = {239, 241}, {21*22 - 1, 21*22 + 1} = {461, 463} are twin prime pairs.
		

Crossrefs

Programs

  • Mathematica
    pp[n_]:=PrimeQ[n(n+1)-1]&&PrimeQ[n(n+1)+1]
    a[n_]:=Sum[If[pp[i]&&pp[j]&&pp[n-i-j],1,0],{i,1,n/3},{j,i,(n-i)/2}]
    Table[a[n],{n,1,100}]
Showing 1-5 of 5 results.