A230283
Numerators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).
Original entry on oeis.org
1, 1, -1, 2, -9, 8, -625, 2, -117649, 128, -6561, 8, -25937424601, 18, -23298085122481, 16, -9, 32768, -48661191875666868481, 400, -104127350297911241532841, 648, -81, 256, -907846434775996175406740561329, 490, -59604644775390625, 1024, -2541865828329, 1296
Offset: 1
-
Clear[nn, n, k, s, x]; nn = 22; Numerator[CoefficientList[1 + Integrate[1 + Expand[Sum[Exp[Limit[Zeta[s]*Sum[(If[n == 1, 0, Table[DivisorSum[m, # MoebiusMu[#] &], {m, nn}][[GCD[n, k]]]])/(k)^(s - 1), {k, 1, n}], s -> 1]]*(-x)^n, {n, 1, nn}]], x], x]]
A264235
Denominator of the coefficients in the expansion of 1/W(x) - 1/x where W(x) is the Lambert W function.
Original entry on oeis.org
1, 2, 3, 8, 15, 144, 35, 5760, 2835, 44800, 6237, 43545600, 25025, 6706022400, 13030875, 229605376, 10854718875, 376610217984000, 282907625, 128047474114560000, 311834363841, 166487326720000, 407510816383125, 26976017466662584320000, 62628675484375
Offset: 0
Coefficients of expansion of exp(W(x)) are 1, 1, -1/2, 2/3, -9/8, 32/15, -625/144, 324/35, -117649/5760, 131072/2835, -4782969/44800, ... - _N. J. A. Sloane_, Jan 08 2021
Similar to but strictly different from
A230284.
-
CoefficientList[Series[1/ProductLog[x] - 1/x, {x, 0, 21}], x] // Denominator
A276048
Sequence associated with the functional equation of the Riemann zeta zero spectrum (see formulas).
Original entry on oeis.org
0, 2, 9, 2, 625, 1, 117649, 2, 9, 1, 25937424601, 1, 23298085122481, 1, 1, 2, 48661191875666868481, 1, 104127350297911241532841, 1, 1, 1, 907846434775996175406740561329, 1, 625, 1, 9, 1, 88540901833145211536614766025207452637361, 1
Offset: 1
-
Clear[s]; -Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(1 - (s))]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(s)], s -> 1], {n, 1, 30}]; Exp[%]
Showing 1-3 of 3 results.
Comments