cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A230283 Numerators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).

Original entry on oeis.org

1, 1, -1, 2, -9, 8, -625, 2, -117649, 128, -6561, 8, -25937424601, 18, -23298085122481, 16, -9, 32768, -48661191875666868481, 400, -104127350297911241532841, 648, -81, 256, -907846434775996175406740561329, 490, -59604644775390625, 1024, -2541865828329, 1296
Offset: 1

Views

Author

Mats Granvik, Oct 15 2013

Keywords

Comments

The coefficients of the series expansion of x/Lambert(x) expanded at 0 can be seen as exponentiated numerators in convergents of zeta function limits of truncated Dirichlet series for logarithms. Those numerators are defined by simple recurrences. Letting those recurrences run in cross directions to each other, one get the Dirichlet inverse of the Euler totient in a greatest common divisor matrix, and the von Mangoldt function as convergents of Dirichlet series. Since x/LambertW(x) is good at approximately describing the nontrivial Riemann zeta zeros and since the Riemann zeta zeros are the frequencies that build up the von Mangoldt function, this prime number or von Mangoldt function version of the x/LambertW(x) is motivated.

Crossrefs

Cf. A191898, A177885, A230284 (denominators).

Programs

  • Mathematica
    Clear[nn, n, k, s, x]; nn = 22; Numerator[CoefficientList[1 + Integrate[1 + Expand[Sum[Exp[Limit[Zeta[s]*Sum[(If[n == 1, 0, Table[DivisorSum[m, # MoebiusMu[#] &], {m, nn}][[GCD[n, k]]]])/(k)^(s - 1), {k, 1, n}], s -> 1]]*(-x)^n, {n, 1, nn}]], x], x]]

A264235 Denominator of the coefficients in the expansion of 1/W(x) - 1/x where W(x) is the Lambert W function.

Original entry on oeis.org

1, 2, 3, 8, 15, 144, 35, 5760, 2835, 44800, 6237, 43545600, 25025, 6706022400, 13030875, 229605376, 10854718875, 376610217984000, 282907625, 128047474114560000, 311834363841, 166487326720000, 407510816383125, 26976017466662584320000, 62628675484375
Offset: 0

Views

Author

Peter Luschny, Nov 09 2015

Keywords

Comments

If prefixed by an additional 1, denominators of coefficients of expansion of exp(W(x)). - N. J. A. Sloane, Jan 08 2021

Examples

			Coefficients of expansion of exp(W(x)) are 1, 1, -1/2, 2/3, -9/8, 32/15, -625/144, 324/35, -117649/5760, 131072/2835, -4782969/44800, ... - _N. J. A. Sloane_, Jan 08 2021
		

Crossrefs

Numerators are in A264234.
Similar to but strictly different from A230284.

Programs

  • Mathematica
    CoefficientList[Series[1/ProductLog[x] - 1/x, {x, 0, 21}], x] // Denominator

A276048 Sequence associated with the functional equation of the Riemann zeta zero spectrum (see formulas).

Original entry on oeis.org

0, 2, 9, 2, 625, 1, 117649, 2, 9, 1, 25937424601, 1, 23298085122481, 1, 1, 2, 48661191875666868481, 1, 104127350297911241532841, 1, 1, 1, 907846434775996175406740561329, 1, 625, 1, 9, 1, 88540901833145211536614766025207452637361, 1
Offset: 1

Views

Author

Mats Granvik, Aug 17 2016

Keywords

Comments

The functional equation formula in the answer by Peter Humphries is for the Dirichlet eta function and corresponds to the second term in this sequence. This sequence corresponds to zeta function products over all the divisors.

Crossrefs

Programs

  • Mathematica
    Clear[s]; -Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(1 - (s))]*Total[MoebiusMu[Divisors[n]]*Divisors[n]^(s)], s -> 1], {n, 1, 30}]; Exp[%]

Formula

a(n) = exp(lim_{s->1} zeta(s)*Sum_{d|n} mu(d)*d^(1 - s)*Sum_{d|n} mu(d)*d^(s)).
a(n) = A014963(n)^(A014963(n)-1), n > 1.
a(n) = A014963(n)^(-A120112(n)), n > 1.
a(prime(n)) = A000169(prime(n)).
Showing 1-3 of 3 results.