cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230320 E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} ( LambertW(-k*x)/(-k*x) )^(1/k).

Original entry on oeis.org

1, 1, 3, 16, 137, 1746, 31627, 785149, 25715377, 1070214364, 54862242971, 3385895548839, 247409460018217, 21118696317592498, 2080845352648353215, 234093630772343822281, 29777361783749418754593, 4247066958924682143019576, 674393753569770072828136819
Offset: 0

Views

Author

Paul D. Hanna, Oct 15 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 137*x^4/4! + 1746*x^5/5! +...
Let W(x) = LambertW(-x)/(-x), then
W(k*x)^(1/k) = Sum_{j>=0} (k*j+1)^(j-1)*x^j/j!
where
A(x) = 1 + x*W(x) + x^2*W(x)*W(2*x)^(1/2)/2! + x^3*W(x)*W(2*x)^(1/2)*W(3*x)^(1/3)/3! + x^4*W(x)*W(2*x)^(1/2)*W(3*x)^(1/3)*W(4*x)^(1/4)/4! +...
RELATED EXPANSIONS:
W(1*x)^(1/1) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! +...
W(2*x)^(1/2) = 1 + x + 5*x^2/2! + 49*x^3/3! + 729*x^4/4! + 14641*x^5/5! +...
W(3*x)^(1/3) = 1 + x + 7*x^2/2! + 100*x^3/3! + 2197*x^4/4! + 65536*x^5/5! +...
W(4*x)^(1/4) = 1 + x + 9*x^2/2! + 169*x^3/3! + 4913*x^4/4! + 194481*x^5/5! +...
W(5*x)^(1/5) = 1 + x + 11*x^2/2! + 256*x^3/3! + 9261*x^4/4! + 456976*x^5/5! +...
W(6*x)^(1/6) = 1 + x + 13*x^2/2! + 361*x^3/3! + 15625*x^4/4! + 923521*x^5/5! +...
W(7*x)^(1/7) = 1 + x + 15*x^2/2! + 484*x^3/3! + 24389*x^4/4! + 1679616*x^5/5! +...
W(8*x)^(1/8) = 1 + x + 17*x^2/2! + 625*x^3/3! + 35937*x^4/4! + 2825761*x^5/5! +...
W(9*x)^(1/9) = 1 + x + 19*x^2/2! + 784*x^3/3! + 50653*x^4/4! + 4477456*x^5/5! +...
W(10*x)^(1/10) = 1 + x + 21*x^2/2! + 961*x^3/3! + 68921*x^4/4! + 6765201*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(LambertW=serreverse(x*exp(x+x^2*O(x^n))), A=1);
    A=sum(m=0, n, x^m/m!*prod(k=1, m, (subst(LambertW, x, -k*x)/(-k*x))^(1/k)));
    n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(W=sum(m=0,n,(m+1)^(m-1)*x^m/m!)+x*O(x^n),A=1);
    A=sum(m=0,n,x^m/m!*prod(k=1,m,subst(W,x,k*x)^(1/k)));
    n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1);
    A=sum(m=0,n,x^m/m!*prod(k=1,m,sum(j=0,n,(k*j+1)^(j-1)*x^j/j!)+x*O(x^n) ));
    n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} Sum_{j>=0} (k*j+1)^(j-1)*x^j/j!.