cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230328 Denominator of n(n+3)/(4(n+1)(n+2)) = Sum_{k = 1..n} 1/(k(k+1)(k+2)).

Original entry on oeis.org

1, 6, 24, 40, 30, 21, 112, 144, 45, 110, 264, 312, 182, 105, 480, 544, 153, 342, 760, 840, 462, 253, 1104, 1200, 325, 702, 1512, 1624, 870, 465, 1984, 2112, 561, 1190, 2520, 2664, 1406, 741, 3120, 3280, 861, 1806, 3784, 3960, 2070, 1081, 4512
Offset: 0

Views

Author

Jean-François Alcover, Oct 16 2013

Keywords

Crossrefs

Cf. A125650 (numerators).

Programs

  • Maple
    seq( 4*(n + 1)*(n + 2)/igcd(4*(n + 1)*(n + 2), n*(n + 3)), n = 0..100); # Peter Bala, Feb 26 2019
  • Mathematica
    Table[Denominator[n*(n+3)/(4*(n+1)*(n+2))], {n, 0, 100}]
  • PARI
    vector(100, n, denominator((n-1)*(n+2)/(4*n*(n+1)))) \\ Colin Barker, Oct 09 2014

Formula

G.f.: -(x^18 +3*x^17 +12*x^16 -6*x^15 +9*x^14 +91*x^12 -138*x^11 +183*x^10 -134*x^9 +183*x^8 -138*x^7 +91*x^6 +9*x^4 -6*x^3 +12*x^2 +3*x +1) / ((x -1)^3*(x^2 +1)^3*(x^4 +1)^3). - Colin Barker, Oct 09 2014 [Confirmed by Peter Bala, Feb 27 2019]
From Peter Bala, Feb 26 2019: (Start)
a(n) = 4*(n + 1)*(n + 2)/gcd(4*(n + 1)*(n + 2), n*(n + 3)).
a(n) is quasi-polynomial in n; a(n) = (n + 1)*(n + 2)/2 when n == 0, 5 (mod 8); a(n) = (n + 1)*(n + 2) when n == 1, 4 (mod 8); a(n) = 2*(n + 1)*(n + 2) when n == 2, 3, 6, 7 (mod 8). (End)