cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230339 Numerator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).

Original entry on oeis.org

0, 1, 1, 19, 17, 55, 83, 119, 82, 73, 95, 121, 227, 559, 679, 815, 484, 1139, 443, 171, 295, 2023, 2299, 2599, 1462, 3275, 3653, 451, 749, 551, 5455, 5983, 3272, 7139, 7769, 8435, 1523, 3293, 3553, 11479, 6170, 13243, 14189, 15179, 8107, 5765
Offset: 0

Views

Author

Jean-François Alcover, Oct 16 2013

Keywords

Examples

			1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 19.
The rationals r(n) = a(n)/A230340(n) begin: 0, 1/24, 1/20, 19/360, 17/315, 55/1008, 83/1512, 119/2160, 82/1485, 73/1320, 95/1716, 121/2184, 227/4095, 559/10080, 679/12240, 815/14688, ... - _Wolfdieter Lang_, Mar 08 2018
		

References

  • L. B. W. Jolley, Summation of Series, Second revised ed., Dover, 1961, p.38, (202) and (201).

Crossrefs

Cf. A001563, A052762, A094258, A125650, A230328, A230340 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
  • PARI
    a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019

Formula

Numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) (from the generic formula Sum_{k=1..n} 1/Pochhammer(k, m) = 1/((m-1)*(m-1)!) - 1/((m-1)*Pochhammer(n+1, m-1)) with m = 4).
G.f. for the rationals r(n) = (1/18)*n*(11+n^2+6*n)/((1+n)*(n+2)*(n+3)) = a(n)/A230340(n): (1/18)*(1 - hypergeometric([1, 3], [4], -x/(1-x)))/(1-x) = (6*x - 15*x^2 + 11*x^3 + 6*(1 - 3*x + 3*x^2 - x^3)*log(1-x))/(36*x^3*(1-x)). - Wolfdieter Lang, Mar 08 2018
a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))). - Colin Barker, Jul 30 2019