cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A230340 Denominator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).

Original entry on oeis.org

1, 24, 20, 360, 315, 1008, 1512, 2160, 1485, 1320, 1716, 2184, 4095, 10080, 12240, 14688, 8721, 20520, 7980, 3080, 5313, 36432, 41400, 46800, 26325, 58968, 65772, 8120, 13485, 9920, 98208, 107712, 58905, 128520, 139860, 151848, 27417, 59280
Offset: 0

Views

Author

Jean-François Alcover, Oct 16 2013

Keywords

Examples

			1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 360.
		

Crossrefs

Cf. A001563, A052762, A094258, A125650, A230328, A230339 (numerators).

Programs

  • Magma
    [Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))):n in [0..100]]; // Marius A. Burtea, Jul 30 2019
  • Mathematica
    a[n_] := Denominator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
  • PARI
    a(n) = denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019
    

Formula

Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))).

A300298 Numerators of r(n) := Sum_{k=0..n-1} 1/Product_{j=0..4} (k + j + 1), for n >= 0, with r(0) = 0.

Original entry on oeis.org

0, 1, 7, 17, 23, 125, 209, 329, 247, 119, 125, 341, 1819, 793, 3059, 3875, 1211, 187, 1219, 4427, 10625, 12649, 4983, 17549, 10237, 11875, 6851, 1311, 35959, 40919, 46375, 17453, 7363, 16511, 36907, 41125, 30463, 101269, 111929, 123409
Offset: 0

Views

Author

Wolfdieter Lang, Apr 05 2018

Keywords

Comments

The denominators are given in A300299.
The sum given in the name is computed using a telescopic sum. See the general recipe given in the Jolley reference, (201), p. 38.

Examples

			The sum begins: 0 + 1/(1*2*3*4*5) + 1/(2*3*4*5*6) + ... =  0 + 1/120 + 1/720 + 1/2520 + 1/6720 + 1/15120 + 1/30240 + ...
The rationals r(n) (partial sums) begin: 0/1, 1/120, 7/720, 17/1680, 23/2240, 125/12096, 209/20160, 329/31680, 247/23760, 119/11440, 125/12012, 341/32760, ...
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 2nd rev. ed., 1961, p. 38, (201).

Crossrefs

Programs

  • GAP
    List(List([0..40],n->Sum([0..n-1],k->1/(Product([0..4],j->k+j+1)))),NumeratorRat); # Muniru A Asiru, Apr 05 2018
    
  • Magma
    [Numerator(n*(50+35*n+10*n^2+n^3)/(96*(1+n)*(2+n)*(n+3)*(4+n))): n in [0..50]]; // Vincenzo Librandi, Apr 06 2018
  • Mathematica
    Table[Numerator[n (50 + 35 n + 10 n^2 + n^3) / (96 (1 + n) (2 + n) (n + 3) (4 + n))], {n, 0, 50}] (* Vincenzo Librandi, Apr 06 2018 *)
  • PARI
    a(n) = numerator(sum(k=0, n-1, prod(j=0, 4, (k+j+1))^(-1))); \\ Altug Alkan, Apr 05 2018
    

Formula

a(n) = numerator(r(n)), with the result of the sum given in the name r(n) = n*(50 + 35*n + 10*n^2 + n^3)/(96*(1 + n)*(2 + n)*(n + 3)*(4 + n)), n >= 0.
This results from r(n) = 1/96 - 1/(4*(1+n)*(2+n)*(n+3)*(4+n)).
G.f. for rationals {r(n)}_{n >= 0}: (1/96)*(1 - hypergeometric([1, 4], [5], -x/(1-x)))/(1-x)
= (-x*(12 - 42*x + 52*x^2 - 25*x^3) + 12*(1 - x)^4*log(1/(1-x))) / (288*x^4*(1-x)).
Showing 1-2 of 2 results.