cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230341 Number of permutations of [2n] in which the longest increasing run has length n.

Original entry on oeis.org

1, 1, 16, 293, 5811, 133669, 3574957, 109546009, 3788091451, 145957544981, 6201593613645, 288084015576169, 14525808779580645, 790129980885855401, 46120599397152203401, 2875600728737862162481, 190740227037467026439611, 13411608375592255857753781
Offset: 0

Views

Author

Alois P. Heinz, Oct 16 2013

Keywords

Crossrefs

A diagonal of A008304.
Cf. A267433.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 1, 16, 293, 5811][n+1],
          (2*(n+1)*(26615475780292426*n^4 +2862121494132556*n^3
            -240402559504315639*n^2 +79488454158677567*n
            +119546195807549142)*a(n-1)
          -n*(406022528821033256*n^4 -1031369150352151615*n^3
            +11028208356875758*n^2 -1654923205028490137*n
            +3900125789057762682)*a(n-2)
          +2*(n-1)*(421508861354067594*n^4 -1543365451253363033*n^3
            -602924004257000736*n^2 +6654606478117189961*n
            -5221800341103267066)*a(n-3)
          -4*(2*n-7)*(n-2)*(26655798868586248*n^3 +401269836638339496*n^2
            -2000296275137853913*n +2124466470996744981)*a(n-4)
          -8*(n-3)*(n-5)*(2*n-7)*(2*n-9)*(8655617328093650*n
            -14323734034655567)*a(n-5)) / (n*(n+2)*(13307737890146213*n^2
            -43906954139467620*n +22672341406878775)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]];
    T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k + 1];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 19 2018, after Alois P. Heinz *)

Formula

a(n) = A008304(2*n,n).
Recurrence (of order 3): n*(n+2)*(12*n^7 - 101*n^6 + 355*n^5 - 668*n^4 + 631*n^3 - 71*n^2 - 344*n + 174)*a(n) = (n+1)*(48*n^9 - 272*n^8 + 453*n^7 - 10*n^6 - 518*n^5 - 741*n^4 + 4090*n^3 - 5810*n^2 + 3444*n - 720)*a(n-1) - 2*n*(2*n - 3)*(60*n^8 - 277*n^7 + 365*n^6 - 59*n^5 - 549*n^4 + 1619*n^3 - 2101*n^2 + 1228*n - 268)*a(n-2) + 4*(n-1)*(2*n - 5)*(2*n - 3)*(12*n^7 - 17*n^6 + n^5 + 12*n^4 - 91*n^3 + 101*n^2 - 12*n - 12)*a(n-3). - Vaclav Kotesovec, Jul 16 2014
a(n) ~ 2^(2*n+1/2)* n^(n+1) / exp(n). - Vaclav Kotesovec, Jul 16 2014