A230361 Integer areas of the tangential triangles corresponding to the integer-sided triangles with integer areas.
23660, 26250, 53235, 94640, 105000, 147875, 212940, 222530, 236250, 378560, 390390, 420000, 479115, 591500, 656250, 788970, 851760, 945000, 1286250, 1330875, 1561560, 1680000, 1916460, 2126250, 2608515, 2625000, 3176250, 3407040, 3513510
Offset: 1
Keywords
Examples
26250 is in the sequence because the triangle of integer sides (a, b, c)= (105, 105, 126) generates the tangential triangle (a', b', c') = (625/2, 625/2, 175) where: a' = 2*a^3*b*c/|a^4 - (b^2 - c^2)^2| = 625/2 b' = 2*a*b^3*c/|b^4 - (c^2 - a^2)^2| = 625/2 c' = 2*a*b*c^3/|c^4 - (a^2 - b^2)^2| = 175 The area of this triangle is given by two possible ways: First way: Heron's formula gives Area = sqrt(s'*(s'-a')*(s'-b')*(s'-c')) = sqrt(400*(400-625/2)*(400-625/2)*(400-175)) = 26250 with the semiperimeter s' = (625/2 + 625/2 + 175)/2 = 400. Second way: Area of the triangle (a, b, c) = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(168*(168-105)*(168-105)*(168-126)) = 5292 with the semiperimeter s = (105 + 105 + 126)/2 = 168. Then, we use the formula Area = (1/2)* Area(A,B,C) * |sec A * sec B * sec C| = 2646*5/3*5/3*25/7 = 26250 where: sec A = 1/cos A = 2*b*c/(b^2+c^2-a^2)= 5/3; sec B = 1/cos B = 2*a*c/(c^2+a^2-b^2)= 5/3; sec C = 1/cos C = 2*a*b/(a^2+b^2-c^2)= 25/7.
References
- Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.
- Kimberling, C. Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998.
Links
- C. Kimberling, Central Points and Central Lines in the Plane of a Triangle, Math. Mag. 67, 163-187, 1994.
- Eric W. Weisstein, MathWorld: Tangential Triangle
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nn=1500; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s (s-a) (s-b) (s-c); aa=Abs[((b^2+c^2-a^2)*(c^2+a^2-b^2)*(a^2+b^2-c^2))];If[0 < area2 && aa>0&& IntegerQ[Sqrt[area2]* (4*a^2*b^2*c^2)/aa], AppendTo[lst, Sqrt[area2]* (4*a^2*b^2*c^2)/aa]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments