cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A230368 A strong divisibility sequence associated with the algebraic integer 1 + i.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 15, 1, 1, 1, 65, 1, 1, 1, 255, 1, 1, 1, 1025, 1, 1, 1, 4095, 1, 1, 1, 16385, 1, 1, 1, 65535, 1, 1, 1, 262145, 1, 1, 1, 1048575, 1, 1, 1, 4194305, 1, 1, 1, 16777215, 1, 1, 1, 67108865, 1, 1, 1, 268435455, 1, 1, 1, 1073741825
Offset: 1

Views

Author

Peter Bala, Jan 10 2014

Keywords

Comments

Let alpha be an algebraic integer and define a sequence of integers a(n) by the condition a(n) = max { integer d : alpha^n == 1 (mod d)}. Silverman shows that a(n) is a strong divisibility sequence, that is gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). For the present sequence we take alpha = 1 + i. For other examples see A230369, A235450 and (conjecturally) A082630.

Crossrefs

Programs

  • Maple
    seq( gcd( 1/2*((1 - I)^n + (1 + I)^n - 2), I/2*((1 + I)^n - (1 - I )^n ) ), n = 1..80);

Formula

a(4*n) = |(-4)^n - 1| otherwise a(n) = 1.
a(4*n) = 5*A015521(n).
O.g.f.: 1/(1 - 4*x^4) - 1/(1 + x^4) + 1/(1 - x) - 1/(1 - x^4) = x*(-1 -x -x^2 -5*x^3 +3*x^4 +3*x^5 +3*x^6 +5*x^7 +4*x^8 +4*x^9 +4*x^10) / ( (1-x) *(1+x) *(2*x^2+1) *(2*x^2-1) *(x^2+1) *(x^4+1) ).
Recurrence equation: a(n) = 4*a(n-4) + a(n-8) - 4*a(n-12).

A235450 A strong divisibility sequence associated with the algebraic integer 2 + 3*sqrt(3).

Original entry on oeis.org

1, 6, 13, 24, 1, 234, 1, 48, 13, 66, 1, 34632, 1, 6, 13, 96, 1, 702, 1, 264, 13, 6, 1, 346320, 1, 6, 13, 24, 59, 2574, 1, 192, 13, 6, 71, 7584408, 1, 6, 169, 16368, 1, 234, 1, 24, 13, 282, 1, 4848480, 1, 66, 13, 24, 1, 2106, 1, 48, 13, 354, 1, 23238072, 1, 6, 13, 384, 1, 234, 1, 24, 13, 4686, 1
Offset: 1

Views

Author

Peter Bala, Jan 10 2014

Keywords

Comments

Let alpha be an algebraic integer and define a sequence of integers a(n) by the condition a(n) = max {integer d : alpha^n == 1 (mod d)}. Silverman shows that a(n) is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). For the present sequence we take alpha = 2 + 3*sqrt(3). For other examples see A230368, A230369 and (conjecturally) A082630.

Crossrefs

Programs

  • Maple
    seq(gcd( expand(1/2*((2 - 3*sqrt(3))^n + (2 + 3*sqrt(3))^n - 2)), expand(((2 + 3*sqrt(3))^n - (2 - 3*sqrt(3))^n)/(2*sqrt(3))) ), n = 1 .. 80);

Formula

a(n) = max {integer d : (2 + 3*sqrt(3))^n == 1 (mod d)}.
a(n) = gcd( 1/2*((2 - 3*sqrt(3))^n + (2 + 3*sqrt(3))^n - 2), ((2 + 3*sqrt(3))^n - (2 - 3*sqrt(3))^n)/(2*sqrt(3)) ).
Showing 1-2 of 2 results.