A230374 The numbers n such that during dividing n by all positive integers not exceeding n the remainder 0 occurs most often.
1, 2, 3, 4, 6, 8, 10, 12, 15, 16, 18, 20, 24, 28, 30, 36, 40, 42, 45, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 90, 96, 100, 102, 104, 105, 108, 112, 120, 126, 132, 138, 140, 144, 150, 156, 160, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 224, 228, 234, 240, 252
Offset: 1
Keywords
Examples
8 is in the sequence because remainder 0 occurs 4 times during division 8 by 1, 2, 3, 4, 5, 6, 7, 8, that is more than other remainders. 9 is not in the sequence because both remainders 0 and 1 occur 3 times during division 9 by 1, 2, 3, 4, 5, 6, 7, 8, 9.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..1000
Programs
-
Maple
rem0:=proc(n) local r,n1,i,mx,f,R; n1:=`if`(n mod 2 = 0, n/2-1,(n-1)/2); R:=Array(0..n1,fill=1):if n mod 2 = 0 then R[0]:=2 fi: for i to n1 do r:=n mod i: R[r]:=R[r]+1 od: mx:=R[0]:f:=true: for i to n1 do if R[i]>= mx then f:=false:break fi od: f; end; for n do if maxrem(n) then print(n) fi od:
-
Mathematica
Select[Range[256], (r = (Transpose@Tally@Mod[#, Range@#])[[2]])[[1]] > Max@Rest@r &] (* Ivan Neretin, Nov 13 2016 *) zmoQ[n_] := Module[{r = Sort[Tally[Mod[n, Range[n]]]], mx}, mx = Select[r, #[[2]] == Max[r[[All, 2]]] &]; Length[mx] == 1 && mx[[1, 1]] == 0]; Select[ Range[300],zmoQ] (* Harvey P. Dale, Jul 02 2019 *)
-
PARI
is(n)=v=vector(n+1);for(d=1,n,t=(n%d)+1;v[t]=v[t]+1);nd=v[1];for(i=2,n,if(v[i]>=nd,return(0)));1 \\ Ralf Stephan, Oct 21 2013
Comments