A230390 5*binomial(8*n+10,n)/(4*n+5).
1, 10, 125, 1760, 26650, 423752, 6978510, 117998400, 2036685765, 35738059500, 635627275767, 11433154297760, 207621482341000, 3801296492623560, 70092637731997100, 1300500163756675200, 24262157874835233000, 454847339247972377850, 8564398318045559667475
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Programs
-
Magma
[5*Binomial(8*n+10, n)/(4*n+5): n in [0..30]];
-
Mathematica
Table[5 Binomial[8 n + 10, n]/(4 n + 5), {n, 0, 30}]
-
PARI
a(n) = 5*binomial(8*n+10,n)/(4*n+5);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/5))^10+x*O(x^n)); polcoeff(B, n)}
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=10.
Comments