cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230390 5*binomial(8*n+10,n)/(4*n+5).

Original entry on oeis.org

1, 10, 125, 1760, 26650, 423752, 6978510, 117998400, 2036685765, 35738059500, 635627275767, 11433154297760, 207621482341000, 3801296492623560, 70092637731997100, 1300500163756675200, 24262157874835233000, 454847339247972377850, 8564398318045559667475
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=8, r=10.

Crossrefs

Programs

  • Magma
    [5*Binomial(8*n+10, n)/(4*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[8 n + 10, n]/(4 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(8*n+10,n)/(4*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/5))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=10.