A230399 Smallest k such that when k is divided by all numbers <= k the remainder n occurs most often.
1, 7, 26, 23, 34, 53, 118, 167, 188, 69, 178, 179, 372, 349, 374, 375, 376, 377, 498, 499, 356, 501, 502, 503, 1284, 1285, 746, 747, 748, 749, 1038, 1039, 1112, 753, 754, 755, 2136, 2137, 2138, 2139, 2140, 2141, 2562, 2443, 1484, 2445, 1486, 1487, 2568, 2569, 2570, 2571, 2572, 2573, 2934, 2575
Offset: 0
Examples
a(1) = 7 because (1) 7 mod 2 = 7 mod 3 = 7 mod 6 = 1 and the other remainders occur fewer times; (2) 7 is the least number k for which r = k mod b yields the remainder r=1 for more bases b < k than any other remainder.
Links
- David A. Corneth, Table of n, a(n) for n = 0..10080 (first 468 terms from Robert Israel)
- Vladimir Letsko, Mathematical Marathon, Problem 181 (in Russian).
Programs
-
Maple
maxrem:=proc(n) local r,n1,i,mx,M,R;n1:=`if`(n mod 2 = 0, n/2-1,(n-1)/2); R:=Array(0..n1,fill=1): if n mod 2 = 0 then R[0]:=2 fi: for i to n1 do r:=n mod i: R[r]:=R[r]+1 od: mx:=R[0]:M:={0}: for i to n1 do if R[i]> mx then mx:=R[i]:M:={i} elif mx=R[i] then M:=M union {i} fi od: M; end; Rs:={0}:S:=[[0,1]]:for n to 6000 do r:=maxrem(n):if nops(r)=1 then r:=op(r): if not member(r,Rs) then Rs:=Rs union {r}:S:=[op(S),[r,n]] fi fi od: S:=sort(S); T:=[]:for i to nops(S) do if S[i,1]=i-1 then T:=[op(T),S[i,2]] else break fi od:T;
-
Mathematica
a[n_] := Module[{k, rems}, For[k = 1, True, k++, rems = SortBy[Tally[Mod[k, Range[k]]], Last]; If[rems[[-1, 1]] == n && rems[[-1, 2]] != rems[[-2, 2]], Print[n, " ", k]; Return[k]]]]; a[0] = 1; a /@ Range[0, 100] (* Jean-François Alcover, Jun 18 2020 *)
-
PARI
record(n)=v=vector(n+1); for(d=1,n, t=(n%d)+1; v[t]=v[t]+1); m=0; p=0; for(i=1,n,if(v[i]>m, m=v[i]; p=i));p for(n=1,100, for(j=1,10^6, if(record(j)==n, print1(j,", "); break))) \\ Ralf Stephan, Oct 21 2013
Comments