A230415 Square array T(i,j) giving the number of differing digits in the factorial base representations of i and j, for i >= 0, j >= 0, read by antidiagonals.
0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 1, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 0, 1, 2, 1, 2, 2, 1, 2
Offset: 0
Examples
The top left corner of this square array begins as: 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, ... 1, 0, 2, 1, 2, 1, 2, 1, 3, 2, 3, ... 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, ... 2, 1, 1, 0, 2, 1, 3, 2, 2, 1, 3, ... 1, 2, 1, 2, 0, 1, 2, 3, 2, 3, 1, ... 2, 1, 2, 1, 1, 0, 3, 2, 3, 2, 2, ... 1, 2, 2, 3, 2, 3, 0, 1, 1, 2, 1, ... 2, 1, 3, 2, 3, 2, 1, 0, 2, 1, 2, ... 2, 3, 1, 2, 2, 3, 1, 2, 0, 1, 1, ... 3, 2, 2, 1, 3, 2, 2, 1, 1, 0, 2, ... 2, 3, 2, 3, 1, 2, 1, 2, 1, 2, 0, ... ... For example, T(1,2) = T(2,1) = 2 as 1 has factorial base representation '...0001' and 2 has factorial base representation '...0010', and they differ by their two least significant digits. On the other hand, T(3,5) = T(5,3) = 1, as 3 has factorial base representation '...0011' and 5 has factorial base representation '...0021', and they differ only by their second rightmost digit. Note that as A007623(6)='100' and A007623(10)='120', we have T(6,10) = T(10,6) = 1 (instead of 2 as in A231713, cf. also its Example section), as here we count only the number of differing digit positions, but ignore the magnitudes of their differences.
Links
- Antti Karttunen, The first 121 antidiagonals of the table, flattened
Crossrefs
Programs
-
Mathematica
nn = 14; m = 1; While[m! < nn, m++]; m; Table[Function[w, Count[Subtract @@ Map[PadLeft[#, Max@ Map[Length, w]] &, w], k_ /; k != 0]]@ Map[IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, {i - j, j}], {i, 0, nn}, {j, 0, i}] // Flatten (* Michael De Vlieger, Jun 27 2016, Version 10.2 *)
-
Scheme
(define (A230415 n) (A230415bi (A025581 n) (A002262 n))) (define (A230415bi x y) (let loop ((x x) (y y) (i 2) (d 0)) (cond ((and (zero? x) (zero? y)) d) (else (loop (floor->exact (/ x i)) (floor->exact (/ y i)) (+ i 1) (+ d (if (= (modulo x i) (modulo y i)) 0 1)))))))
Comments