A230441 Number of overpartitions of n minus the number of partitions of n.
0, 1, 2, 5, 9, 17, 29, 49, 78, 124, 190, 288, 427, 627, 905, 1296, 1831, 2567, 3563, 4910, 6709, 9112, 12286, 16473, 21953, 29108, 38388, 50398, 65850, 85683, 111020, 143302, 184263, 236113, 301498, 383757, 486909, 615955, 776921, 977263, 1225934, 1533945
Offset: 0
Keywords
Examples
The 14 overpartitions of 4 are 01: [4], 02: [4'], 03: [2, 2], 04: [2', 2], 05: [3, 1], 06: [3', 1], 07: [3, 1'], 08: [3', 1'], 09: [2, 1, 1], 10: [2', 1, 1], 11: [2, 1', 1], 12: [2', 1', 1], 13: [1, 1, 1, 1], 14: [1', 1, 1, 1]. There are 9 overpartitions that contain at least one overlined part, so a(4) = 9. - _Omar E. Pol_, Jan 19 2014
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2], b(n, i-1) +add((l->l+[0, l[2]])(b(n-i*j, i-1)), j=1..n/i))) end: a:= n-> (l->l[2]-l[1])(b(n$2)): seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, {1, 1}, If[i<1, {0, 0}, b[n, i-1] + Sum[Function[ {l}, l+{0, l[[2]]}][b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := Function[{l}, l[[2]]-l[[1]]][b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 28 2015, after Alois P. Heinz *)
Comments