cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230441 Number of overpartitions of n minus the number of partitions of n.

Original entry on oeis.org

0, 1, 2, 5, 9, 17, 29, 49, 78, 124, 190, 288, 427, 627, 905, 1296, 1831, 2567, 3563, 4910, 6709, 9112, 12286, 16473, 21953, 29108, 38388, 50398, 65850, 85683, 111020, 143302, 184263, 236113, 301498, 383757, 486909, 615955, 776921, 977263, 1225934, 1533945
Offset: 0

Views

Author

Omar E. Pol, Jan 09 2014

Keywords

Comments

Number of overpartitions of n that contain at least one overlined part. - Omar E. Pol, Jan 19 2014

Examples

			The 14 overpartitions of 4 are
01: [4],
02: [4'],
03: [2, 2],
04: [2', 2],
05: [3, 1],
06: [3', 1],
07: [3, 1'],
08: [3', 1'],
09: [2, 1, 1],
10: [2', 1, 1],
11: [2, 1', 1],
12: [2', 1', 1],
13: [1, 1, 1, 1],
14: [1', 1, 1, 1].
There are 9 overpartitions that contain at least one overlined part, so a(4) = 9. - _Omar E. Pol_, Jan 19 2014
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
          b(n, i-1) +add((l->l+[0, l[2]])(b(n-i*j, i-1)), j=1..n/i)))
        end:
    a:= n-> (l->l[2]-l[1])(b(n$2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 30 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1, 1}, If[i<1, {0, 0}, b[n, i-1] + Sum[Function[ {l}, l+{0, l[[2]]}][b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := Function[{l}, l[[2]]-l[[1]]][b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 28 2015, after Alois P. Heinz *)

Formula

a(n) = A015128(n) - A000041(n).