cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230444 Primes of the form (p^k + k - 1)/k for prime p and some k > 1.

Original entry on oeis.org

5, 13, 61, 157, 181, 421, 601, 733, 821, 1741, 1861, 2287, 2521, 3121, 5101, 8581, 9661, 9931, 16381, 19609, 19801, 36721, 60901, 71821, 83641, 100801, 106261, 135721, 161881, 163021, 199081, 205441, 218461, 273061, 282001, 337021, 388081, 431521, 491041
Offset: 1

Views

Author

Irina Gerasimova, Oct 18 2013

Keywords

Examples

			601 is a term because (7^4 + 4 - 1)/4 = 601 where 7, 601 are both prime,
733 is a term because (13^3 + 3 -1)/3 = 733 where 13, 733 are both prime,
821 is a term because (3^8 + 8 - 1)/8 = 821 where 3, 821 are both prime.
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # for terms <= N
    S:= {}: p:= 1:
    do
      p:= nextprime(p);
      if p^2/2 > N then break fi;
      for k from 2 do
        v:= (p^k + k - 1)/k;
        if v > N then break fi;
        if v::integer and isprime(v) then  S:= S union {v} fi;
    od od:
    sort(convert(S,list)); # Robert Israel, Jun 22 2023
  • PARI
    isA230444(n) = {isprime(n) || return(0); my(k = 2, v, p); while (1, v = k*n+1-k; if (ispower(v, k, &p) && isprime(p), return(1)); if (v < 2^k, return(0)); k++;);} \\ Michel Marcus, Oct 19 2013

Extensions

More terms from Michel Marcus, Oct 19 2013