cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230449 T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A052952(n), n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 5, 4, 1, 4, 8, 9, 8, 1, 5, 12, 17, 17, 12, 1, 6, 17, 29, 34, 29, 21, 1, 7, 23, 46, 63, 63, 50, 33, 1, 8, 30, 69, 109, 126, 113, 83, 55, 1, 9, 38, 99, 178, 235, 239, 196, 138, 88, 1, 10, 47, 137, 277, 413, 474, 435, 334, 226, 144
Offset: 0

Views

Author

Johannes W. Meijer, Oct 19 2013

Keywords

Comments

The right hand columns of triangle T(n, k) represent the Kn2p sums of the ‘Races with Ties’ triangle A035317. See A180662 for the definitions of these sums.
The row sums lead to A094687, the convolution of Fibonacci and Jacobsthal numbers, and the alternating row sums lead to A008346.
The backwards antidiagonal sums equal Kn21(n) = (-1)^n*A175722(n).

Examples

			The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.
n/k 0   1   2    3    4     5     6     7
------------------------------------------------
0|  1
1|  1,  1
2|  1,  2,  3
3|  1,  3,  5,   4
4|  1,  4,  8,   9,   8
5|  1,  5, 12,  17,  17,   12
6|  1,  6, 17,  29,  34,   29,   21
7|  1,  7, 23,  46,  63,   63,   50,   33
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0   1   2    3    4     5     6     7
------------------------------------------------
0|  1,  1,  3,   4,   8,   12,   21,   33
1|  1,  2,  5,   9,  17,   29,   50,   83
2|  1,  3,  8,  17,  34,   63,  113,  196
3|  1,  4, 12,  29,  63,  126,  239,  435
4|  1,  5, 17,  46, 109,  235,  474,  909
5|  1,  6, 23,  69, 178,  413,  887, 1796
6|  1,  7, 30,  99, 277,  690, 1577, 3373
7|  1,  8, 38, 137, 414, 1104, 2681, 6054
		

Crossrefs

Cf. (Triangle columns) A000012, A000027, A089071, A052952, A129696

Programs

  • Maple
    T:= proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2) - (1-(-1)^n)/2) else procname(n-1,k-1)+procname(n-1,k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
    T := proc(n, k): add(A035317(k-p+n-k, k-2*p), p=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.

Formula

T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = F(n+2) - (1-(-1)^n)/2 = A052952(n), with F(n) = A000045(n), the Fibonacci numbers, n >= 0 and 0 <= k <= n.
T(n+p-1, n) = sum(A035317(n-k+p-1, n-2*k), k=0..floor(n/2)), n >= 0 and p >= 1.
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
Tsq(n, k) = sum(Tsq(n-1, i), i=0..k), n >= 1 and k >= 0, with Tsq(0, k) = A052952(k).
Tsq(n, k) = sum(A035317(n+k-i, k-2*i), i=0..floor(k/2)), n >= 0 and k >= 0.
Tsq(n, k) = A052952(2*n+k) - sum(A035317(n+k+i+1, k+2*i+2), i = 0..n-1)
The G.f. generates the terms in the n-th row of the square array Tsq(n, k).
G.f.: (-1)^(n)/((-1+x+x^2)*(x+1)*(x-1)^(n+1)), n >= 0.