A230449 T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A052952(n), n >= 0 and 0 <= k <= n.
1, 1, 1, 1, 2, 3, 1, 3, 5, 4, 1, 4, 8, 9, 8, 1, 5, 12, 17, 17, 12, 1, 6, 17, 29, 34, 29, 21, 1, 7, 23, 46, 63, 63, 50, 33, 1, 8, 30, 69, 109, 126, 113, 83, 55, 1, 9, 38, 99, 178, 235, 239, 196, 138, 88, 1, 10, 47, 137, 277, 413, 474, 435, 334, 226, 144
Offset: 0
Examples
The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n. n/k 0 1 2 3 4 5 6 7 ------------------------------------------------ 0| 1 1| 1, 1 2| 1, 2, 3 3| 1, 3, 5, 4 4| 1, 4, 8, 9, 8 5| 1, 5, 12, 17, 17, 12 6| 1, 6, 17, 29, 34, 29, 21 7| 1, 7, 23, 46, 63, 63, 50, 33 The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0. n/k 0 1 2 3 4 5 6 7 ------------------------------------------------ 0| 1, 1, 3, 4, 8, 12, 21, 33 1| 1, 2, 5, 9, 17, 29, 50, 83 2| 1, 3, 8, 17, 34, 63, 113, 196 3| 1, 4, 12, 29, 63, 126, 239, 435 4| 1, 5, 17, 46, 109, 235, 474, 909 5| 1, 6, 23, 69, 178, 413, 887, 1796 6| 1, 7, 30, 99, 277, 690, 1577, 3373 7| 1, 8, 38, 137, 414, 1104, 2681, 6054
Programs
-
Maple
T:= proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2) - (1-(-1)^n)/2) else procname(n-1,k-1)+procname(n-1,k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program. T := proc(n, k): add(A035317(k-p+n-k, k-2*p), p=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
Formula
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = F(n+2) - (1-(-1)^n)/2 = A052952(n), with F(n) = A000045(n), the Fibonacci numbers, n >= 0 and 0 <= k <= n.
T(n+p-1, n) = sum(A035317(n-k+p-1, n-2*k), k=0..floor(n/2)), n >= 0 and p >= 1.
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
Tsq(n, k) = sum(Tsq(n-1, i), i=0..k), n >= 1 and k >= 0, with Tsq(0, k) = A052952(k).
Tsq(n, k) = sum(A035317(n+k-i, k-2*i), i=0..floor(k/2)), n >= 0 and k >= 0.
The G.f. generates the terms in the n-th row of the square array Tsq(n, k).
G.f.: (-1)^(n)/((-1+x+x^2)*(x+1)*(x-1)^(n+1)), n >= 0.
Comments