cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230476 a(n) = Sum_{i=1..n} d(8*i+1) - Sum_{i=1..n} d(2*i+1), where d(n) = A000005(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 4, 6, 6, 7, 7, 6, 10, 10, 11, 11, 9, 11, 13, 15, 16, 14, 16, 15, 15, 17, 17, 22, 22, 22, 20, 18, 20, 24, 24, 25, 27, 27, 27, 26, 28, 26, 30, 30, 29, 31, 31, 37, 35, 35, 35, 31, 35, 35, 40, 40, 38, 40, 40, 41, 41, 41, 43, 47, 47, 46, 42, 44, 46, 50, 48, 46, 52, 52, 52, 54, 52, 55, 55, 53, 55, 53, 59, 58, 56, 58
Offset: 1

Views

Author

Jonathan Sondow, Oct 20 2013

Keywords

Comments

Cimadevilla proved that a(n) >= 0. That is surprising because d(8*i+1) - d(2*i+1) < 0 for i = 12, 17, 22, 24, 31, 32, 40, 42, 45, 49, 52, 57, 66, 67, 71, 72, 77, 80, 82, 84, 85, ...

Examples

			The divisors of 8*1 + 1 = 9 are 1, 3, 9 and those of 2*1 + 1 = 3 are 1, 3, so a(1) = d(9) - d(3) = 3 - 2 = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[ DivisorSigma[0, 8 i + 1] - DivisorSigma[0, 2 i + 1], {i, n}], {n, 100}]
  • PARI
    a(n) = sum(i=1, n, numdiv(8*i+1) - numdiv(2*i+1)); \\ Michel Marcus, Jun 19 2015

Formula

a(n) = Sum_{i=1..n} (d(8*i+1) - d(2*i+1)) = A230293(n) + A230294(n).
a(n) = log(2) * n + O(n^(1/3)*log(n)). - Amiram Eldar, Apr 12 2024