cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230479 Integer areas of the integer-sided triangles such that the length of the circumradius is a square.

Original entry on oeis.org

168, 336, 432, 600, 768, 2688, 5376, 6000, 6912, 9600, 12288, 13608, 14280, 20280, 27216, 28560, 30720, 32928, 34560, 34992, 38640, 43008, 46200, 48600, 62208, 69360, 77280, 86016, 96000, 105000, 108000, 110592, 118272, 153600, 196608
Offset: 1

Views

Author

Michel Lagneau, Oct 20 2013

Keywords

Comments

The primitive areas are 168, 338, 432, 600, 768, 13608, 14280, 20280, 27216, ...
The non-primitive areas 16*a(n) are in the sequence because if R is the circumradius corresponding to a(n), then 4*R is the circumradius corresponding to 16*a(n).
Each circumradius belongs to the sequence {25, 100, 169, 225, 289, 400, 625, 676, ...}, and it seems that this last sequence is A198385 (second of a triple of squares in arithmetic progression).
The following table gives the first values (A, R, a, b, c) where A is the integer area, R the radius of the circumcircle, and a, b, c are the integer sides of the triangle.
**************************************
* A * R * a * b * c *
**************************************
* 168 * 25 * 14 * 30 * 40 *
* 336 * 25 * 14 * 48 * 50 *
* 432 * 25 * 30 * 30 * 48 *
* 600 * 25 * 30 * 40 * 50 *
* 768 * 25 * 40 * 40 * 48 *
* 2688 * 100 * 56 * 120 * 160 *
* 5376 * 100 * 56 * 192 * 200 *
* 6912 * 100 * 120 * 120 * 192 *
* 9600 * 100 * 120 * 160 * 200 *
* 12288 * 100 * 160 * 160 * 192 *
* 13608 * 225 * 126 * 270 * 360 *
* 14280 * 169 * 130 * 238 * 312 *
* 20280 * 169 * 130 * 312 * 338 *
* 27216 * 225 * 126 * 432 * 450 *
.............................

Examples

			168 is in the sequence because the area of the triangle (14, 30, 40) is given by Heron's formula A = sqrt(42*(42-14)*(42-30)*(42-40))= 168 where the number 42 is the semiperimeter, and the circumcircle is given by R = a*b*c/(4*A) = 14*30*40/(4*168) = 25, which is a square.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Programs

  • Mathematica
    nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[a*b*c/(4*Sqrt[area2])]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

Formula

Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
Circumradius R = a*b*c/4A.