A230479 Integer areas of the integer-sided triangles such that the length of the circumradius is a square.
168, 336, 432, 600, 768, 2688, 5376, 6000, 6912, 9600, 12288, 13608, 14280, 20280, 27216, 28560, 30720, 32928, 34560, 34992, 38640, 43008, 46200, 48600, 62208, 69360, 77280, 86016, 96000, 105000, 108000, 110592, 118272, 153600, 196608
Offset: 1
Keywords
Examples
168 is in the sequence because the area of the triangle (14, 30, 40) is given by Heron's formula A = sqrt(42*(42-14)*(42-30)*(42-40))= 168 where the number 42 is the semiperimeter, and the circumcircle is given by R = a*b*c/(4*A) = 14*30*40/(4*168) = 25, which is a square.
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
Links
- Eric W. Weisstein, MathWorld: Circumradius
Programs
-
Mathematica
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[a*b*c/(4*Sqrt[area2])]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Formula
Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
Circumradius R = a*b*c/4A.
Comments