cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230486 Numbers n such that n^n is representable as the sum of two nonzero squares.

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 30, 34, 37, 40, 41, 50, 52, 53, 58, 60, 61, 65, 68, 70, 73, 74, 78, 80, 82, 85, 89, 90, 97, 100, 101, 102, 104, 106, 109, 110, 113, 116, 120, 122, 125, 130, 136, 137, 140, 145, 146, 148, 149, 150, 156, 157, 160, 164, 169, 170
Offset: 1

Views

Author

Alex Ratushnyak, Oct 20 2013

Keywords

Comments

If n is even, then n must have a prime factor of the form 4k+1. If n is odd, then all prime factors must be of the form 4k+1. - T. D. Noe, Oct 21 2013
The above is also a sufficient condition: the sequence consists exactly in even multiples of Pythagorean primes A002144, and products of such primes (A008846). - M. F. Hasler, Sep 02 2018

Examples

			5^5 = 55^2 + 10^2.
10^10 = 99712^2 + 7584^2.
13^13 = 17106843^2 + 3198598^2.
17^17 = 28735037644^2 + 1240110271^2.
		

References

  • G. H. Hardy and E. M. Wright, Theory of Numbers, Oxford, Sixth Edition, 2008, p. 395.

Crossrefs

Cf. A000312 (n^n), A004431, A132777.
A subsequence of A000404 (numbers that are the sum of 2 nonzero squares).
Sequence A002144 (primes of the form 4k + 1) and A008846 (products of such primes) are subsequences.

Programs

  • Mathematica
    t = {}; Do[f = FactorInteger[n]; p = Transpose[f][[1]]; If[EvenQ[n], If[MemberQ[Mod[p, 4], 1], AppendTo[t, n]], If[Union[Mod[p, 4]] == {1}, AppendTo[t, n]]], {n, 2, 200}]; t (* T. D. Noe, Oct 21 2013 *)
  • PARI
    select( is_A230486(n)={(n=factor(n)[,1]%4) && if(n[1]==2, Set(n)[1]==1, Set(n)==[1])}, [1..200]) \\ M. F. Hasler, Sep 02 2018
    
  • Python
    from itertools import count, islice
    from sympy import primefactors
    def A230486_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:all(p&3==1 for p in primefactors(n)) if n&1 else any(p&3==1 for p in primefactors(n)),count(max(startvalue,2)))
    A230486_list = list(islice(A230486_gen(),20)) # Chai Wah Wu, May 15 2023

Formula

A230486 = { n | A000312(n) is in A000404 } = A004277*A002144 U A008846. - M. F. Hasler, Sep 02 2018

Extensions

Extended by T. D. Noe, Oct 21 2013