cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A230498 a(n) is the minimal odd odious k>1, such that k^i, i=2,...,n, all are evil, and a(n)=0, if there is no such k.

Original entry on oeis.org

13, 21, 21, 47, 265, 607, 883, 883, 883, 883, 10865, 10865, 58241, 58241, 58241, 75781, 367815, 766165, 2931371, 5288671, 5288671, 14838843, 14838843, 14838843, 33417397, 737812313, 2774333869, 3513898753, 3513898753, 3513898753, 14369883465, 14369883465, 22865025261
Offset: 2

Views

Author

Keywords

Comments

A conjugate sequence to A230495 and A230496.
Conjecture: For all n, a(n) > 0.

Crossrefs

Programs

  • Mathematica
    evQ[n_] := EvenQ[DigitCount[n, 2, 1]]; evExp[n_] := Module[{e = 1, p = n^2}, If[! evQ[n], While[evQ[p], p *= n; e++]]; e]; seq[nmax_] := Module[{e, emax = 1, n = 3, s = {}}, Do[e = evExp[n]; If[e > emax, s = Join[s, ConstantArray[n, e - emax]]; emax = e], {n, 3, nmax, 2}]; s]; seq[11000] (* Amiram Eldar, Aug 03 2023 *)

Extensions

a(27)-a(34) from Amiram Eldar, Aug 03 2023

A230500 Indices of "power odious-evil stability" of odd integers 2*n-1 > 1 (see comment).

Original entry on oeis.org

3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 3, 4, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 4, 4, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 3, 2, 1, 8, 4, 1, 1, 2, 1, 1, 3, 2, 2, 2, 1, 2, 1, 3, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 3, 1, 1, 3, 1
Offset: 2

Views

Author

Vladimir Shevelev, Oct 21 2013

Keywords

Comments

We say that odious 2*n-1, n>=2, has "power odious-evil stability" of index k, if k is the maximal, such that the numbers 2*n-1, (2n-1)^2, ... , (2n-1)^k all are evil or all are odious.
For example, 3, 3^2, 3^3 are evil, while 3^4 is odious. So 3 has power stability of index 3. For 5 it is 1, for 7 it is 2, etc.

Crossrefs

A230499 a(n) is the maximal number k of consecutive numbers of the form (2*n-1)*(2*i-1), i=1,2,...,k, which are all evil or all odious (A000069, A001969).

Original entry on oeis.org

1, 3, 2, 4, 4, 1, 1, 9, 8, 1, 1, 1, 1, 1, 1, 16, 16, 1, 1, 1, 1, 3, 4, 1, 1, 3, 2, 1, 1, 1, 1, 33, 32, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 5, 1, 1, 5, 2, 4, 20, 4, 3, 1, 1, 4, 2, 1, 1, 1, 1, 64, 64, 1, 1, 1, 1, 2, 4, 1, 1, 3, 4, 5, 4, 3, 2, 1, 1, 2, 4, 3, 3, 1, 1
Offset: 1

Views

Author

Vladimir Shevelev, Oct 21 2013

Keywords

Comments

We call a(n) the multiplicative index of odious-evil stability of 2*n-1.

Examples

			For n=2, t=2*n-1=3. We see that 3*1=3, 3*3=9,3*5=15 are evil, but 3*7=21 is odious. So, a(2)=3.
		

Crossrefs

Programs

  • PARI
    a(n)=my(t=2*n-1,H=hammingweight(t)%2,i=3); while(H == hammingweight(i*t)%2, i+=2); i\2 \\ Charles R Greathouse IV, Oct 22 2013

Formula

If 2*n-1 is Mersenne number (A000225), then a(n)>=n; if 2*n-1 is odious such that 6*n-3 is not in A224072, then a(n)=1.

Extensions

a(17)-a(87) from Charles R Greathouse IV, Oct 22 2013
Showing 1-3 of 3 results.