cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230504 Smallest prime in r(k) = r(k-1) + gcd(k,r(k-1)) with r(1) = n.

Original entry on oeis.org

2, 2, 3, 19, 5, 19, 7, 11, 11, 17, 11, 17, 13, 17, 17, 23, 17, 23, 19, 23, 23, 29, 23, 29, 29, 29, 29, 37, 29, 37, 31, 37, 37, 53, 53, 53, 37, 41, 41, 47, 41, 47, 43, 47, 47, 53, 47, 53, 53, 53, 53, 59, 53, 59, 59, 59, 59, 67, 59, 67, 61, 67, 67, 79, 79, 79
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 15 2013

Keywords

Comments

a(p) = p, p prime;
a(2*n-1) = A060264(n-1).

Examples

			n = 1 -> 1 + GCD(1,2) = 1+1 = 2 = prime(1) = a(1);
n = 2 = prime(1) = a(2);
n = 3 = prime(2) = a(3);
n = 4 -> 4+GCD(4,2) = 4+2 = 6 -> 6+GCD(6,3) = 6+3 = 9 -> 9+GCD(9,4) = 9+1 = 10 -> 10+GCD(10,5) = 10+5 = 15 -> 15+GCD(15,6) = 15+3 = 18 -> 18+GCD(18,7) = 18+1 = 19 = prime(8) = a(4) = A084662(7);
n = 5 = prime(3) = a(5) = A134736(1);
n = 6 -> 6+GCD(6,2) = 6+2 = 8 -> 8+GCD(8,3) = 8+1 = 9 -> 9+GCD(9,4) = 9+1 = 10 -> 10+GCD(10,5) = 10+5 = 15 -> 15+GCD(15,6) = 15+3 = 18 -> 18+GCD(18,7) = 18+1 = 19 = prime(8) = a(6);
n = 7 = prime(4) = a(7) = A106108(1);
n = 8 -> 8+GCD(8,2) = 8+2 = 10 -> 10+GCD(10,3) = 10+1 = 11 = prime(5) = a(8) = A084663(3);
n = 9 -> 9+GCD(9,2) = 9+2 = 11 = prime(5) = a(9);
n = 10 -> 10+GCD(10,2) = 10+2 = 12 -> 12+GCD(12,3) = 12+3 = 15 -> 15+GCD(15,4) = 15+1 = 16 -> 16+GCD(16,5) = 16+1 = 17 = prime(7) = a(10);
n = 11 = prime(5) = a(11);
n = 12 -> 12+GCD(12,2) = 12+2 = 14 -> 14+GCD(14,3) = 14+1 = 15 -> 15+GCD(15,4) = 15+1 = 16 -> 16+GCD(16,5) = 16+1 = 17 = prime(7) = a(10).
		

Crossrefs

Programs

  • Haskell
    a230504 n = head $ filter ((== 1) . a010051') rs where
                       rs = n : zipWith (+) rs (zipWith gcd rs [2..])
    
  • Mathematica
    a[n_] := Module[{r}, If[PrimeQ[n], n, r[1]=n; r[k_] := r[k] = r[k-1] + GCD[k, r[k-1]]; For[k=1, True, k++, If[PrimeQ[r[k]], Return[r[k]]]]]];
    Array[a, 66] (* Jean-François Alcover, Dec 03 2018 *)
  • Python
    from math import gcd
    from itertools import count, accumulate
    from sympy import isprime
    def A230504(n): return next(filter(isprime,accumulate(count(2),lambda x,y:x+gcd(x,y),initial=n))) # Chai Wah Wu, Mar 15 2023