cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230514 Number of ways to write n = a + b + c (0 < a <= b <= c) such that all the three numbers a*(a+1)-1, b*(b+1)-1, c*(c+1)-1 are Sophie Germain primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 3, 4, 3, 4, 4, 4, 3, 5, 4, 4, 4, 5, 4, 4, 2, 4, 4, 4, 2, 3, 2, 3, 2, 1, 2, 2, 3, 3, 3, 4, 5, 3, 2, 5, 6, 5, 5, 6, 5, 7, 9, 6, 7, 9, 9, 8, 10, 8, 8, 10, 7, 8, 10, 6, 9, 8, 6, 5, 8, 4, 7, 4, 4, 8, 7, 5, 3, 5, 3, 7, 3, 3, 5, 7, 5, 4, 6, 5, 6, 7, 5, 6, 10, 9, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 21 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 22 2023
This implies that there are infinitely many Sophie Germain primes of the form x^2 + x - 1.
See also A230516 for a similar conjecture.

Examples

			a(10) = 2 since 10 = 2 + 2 + 6 = 2 + 3 + 5, and 2*3 - 1 = 5, 6*7 - 1 = 41, 3*4 - 1 = 11, 5*6 - 1 = 29 are all Sophie Germain primes.
a(39) = 1 since 39 = 9 + 15 + 15, and both 9*10 - 1 = 89 and 15*16 - 1 = 239 are Sophie Germain primes.
		

Crossrefs

Programs

  • Mathematica
    pp[n_]:=PrimeQ[n(n+1)-1]&&PrimeQ[2n(n+1)-1]
    a[n_]:=Sum[If[pp[i]&&pp[j]&&pp[n-i-j],1,0],{i,1,n/3},{j,i,(n-i)/2}]
    Table[a[n],{n,1,100}]