A230516 Number of ways to write n = a + b + c with 0 < a <= b <= c such that {a^2+a-1, a^2+a+1}, {b^2+b-1, b^2+b+1}, {c^2+c-1, c^2+c+1} are twin prime pairs.
0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 4, 4, 3, 5, 5, 4, 6, 6, 4, 4, 4, 3, 3, 4, 1, 2, 3, 4, 4, 5, 6, 6, 7, 6, 6, 7, 6, 4, 3, 5, 4, 4, 3, 5, 5, 6, 8, 6, 7, 11, 7, 6, 9, 8, 4, 8, 6, 5, 7, 5, 4, 8, 10, 5, 7, 9, 6, 10, 6, 7, 7, 7, 4, 4, 8, 5, 5, 4, 6, 9, 7, 7, 7, 7, 7, 8
Offset: 1
Keywords
Examples
a(8) = 1 since 8 = 2 + 3 + 3, and {2*3 - 1, 2*3 + 1} = {5, 7} and {3*4 - 1, 3*4 + 1} = {11, 13} are twin prime pairs. a(39) = 1 since 39 = 3 + 15 + 21, and {3*4 - 1, 3*4 + 1} = {11, 13}, {15*16 - 1, 15*16 + 1} = {239, 241}, {21*22 - 1, 21*22 + 1} = {461, 463} are twin prime pairs.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588 [math.NT], 2012-2017.
Programs
-
Mathematica
pp[n_]:=PrimeQ[n(n+1)-1]&&PrimeQ[n(n+1)+1] a[n_]:=Sum[If[pp[i]&&pp[j]&&pp[n-i-j],1,0],{i,1,n/3},{j,i,(n-i)/2}] Table[a[n],{n,1,100}]
Comments