A230517 An irrational x such that the decimal representation of neither x nor sqrt(x) contains the digit 0.
1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
0.12132113211112111112111111213111112113131112111111111411111113...
Links
- C. V. Eynden, Problem 10439. An irrational mimic of 1/9, Amer. Math. Monthly, 104 (1997), 873.
Programs
-
PARI
pdeci(x, nb) = {x = x * 10; for (n=1, nb, d = floor(x); x = (x-d)*10; print1(d, ", ");); print();} finddeci(x) = {x = x * 10; found = 0; nd = 1; while (! found, d = floor(x); x = (x-d)*10; if (d == 0, found = 1, nd++);); nd;} changedeci(x, ndeci) = {deci = floor(x * 10^ndeci) - 10*floor(x * 10^(ndeci-1)); x += 2/10^ndeci; x;} lista(nn) = {prec = 2*nn; default(realprecision, prec); x = 0; for (n=1, prec, x = 10*x + 1 + issquare(9+8*n);); x /= 10^prec; ok = 0; while (! ok, y = sqrt(x); ndeci = finddeci(y); print1(ndeci, ", "); x = changedeci(x, ndeci); if (ndeci > nn, ok =1);); print(); pdeci(x, nn); print("sqrt(x)=", sqrt(x));} \\ Michel Marcus, Oct 22 2013
Comments