A230543 Numbers n that form a Pythagorean quadruple with n', n'' and sqrt(n^2 + n'^2 + n''^2), where n' and n'' are the first and the second arithmetic derivative of n.
512, 1203, 3456, 6336, 23328, 42768, 157464, 249753, 288684, 400000, 722718, 1062882, 1948617, 2700000, 4950000, 18225000, 33412500, 105413504, 123018750, 225534375, 312500000, 408918816
Offset: 1
Examples
If n = 6336 then n' = 23808, n'' = 103936 and sqrt(n^2 + n'^2 + n''^2) = 106816.
Links
- Eric Weisstein's World of Mathematics, Pythagorean Quadruple
Crossrefs
Programs
-
Maple
with(numtheory): P:= proc(q) local a1, a2, n, p; for n from 2 to q do a1:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); a2:=a1*add(op(2,p)/op(1,p),p=ifactors(a1)[2]); if type(sqrt(n^2+a1^2+a2^2),integer) then print(n); fi; od; end: P(10^10);
Extensions
a(16)-a(18) from Giovanni Resta, Oct 25 2013
a(19) from Ray Chandler, Dec 22 2016
a(20) from Ray Chandler, Dec 31 2016
a(21) from Ray Chandler, Jan 05 2017
a(22) from Ray Chandler, Jan 09 2017
Comments