cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230543 Numbers n that form a Pythagorean quadruple with n', n'' and sqrt(n^2 + n'^2 + n''^2), where n' and n'' are the first and the second arithmetic derivative of n.

Original entry on oeis.org

512, 1203, 3456, 6336, 23328, 42768, 157464, 249753, 288684, 400000, 722718, 1062882, 1948617, 2700000, 4950000, 18225000, 33412500, 105413504, 123018750, 225534375, 312500000, 408918816
Offset: 1

Views

Author

Paolo P. Lava, Oct 25 2013

Keywords

Comments

Tested up to n = 4.09*10^8.

Examples

			If n = 6336 then n' = 23808, n'' = 103936 and sqrt(n^2 + n'^2 + n''^2) = 106816.
		

Crossrefs

Cf. A096907-A096909 and A097263-A097266 for Pythagorean Quadruples.

Programs

  • Maple
    with(numtheory): P:= proc(q) local a1, a2, n, p;
    for n from 2 to q do a1:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    a2:=a1*add(op(2,p)/op(1,p),p=ifactors(a1)[2]);
    if type(sqrt(n^2+a1^2+a2^2),integer) then print(n);
    fi; od; end: P(10^10);

Extensions

a(16)-a(18) from Giovanni Resta, Oct 25 2013
a(19) from Ray Chandler, Dec 22 2016
a(20) from Ray Chandler, Dec 31 2016
a(21) from Ray Chandler, Jan 05 2017
a(22) from Ray Chandler, Jan 09 2017