A230558 Integer areas of extouch triangles of integer-sided triangles.
30, 48, 72, 84, 120, 192, 252, 270, 288, 336, 432, 480, 648, 720, 750, 756, 768, 780, 936, 1008, 1080, 1152, 1200, 1344, 1470, 1728, 1800, 1920, 2100, 2268, 2352, 2400, 2430, 2592, 2784, 2880, 3000, 3024, 3060, 3072, 3120, 3528, 3600, 3630, 3888, 4032, 4116
Offset: 1
Keywords
Examples
30 is in the sequence. We use two ways: First way: the formula A' = A*(a+b-c)*(a-b+c)*(-a+b+c)/(4*a*b*c) gives directly the result: A' = 150*(15+20-25)*(15-20+25)*(-15+20+25)/(4*15*20*25) = 30, with the area A = 150 obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(30*(30-15)*(30-20)*(30-25)) = 150, where s is the semiperimeter. Second way: by calculation of the sides t1, t2, t3 and by using Heron's formula. The extouch triangle (t1,t2,t3) of the initial triangle (a, b, c) = (15, 20, 25) is the triangle (3*sqrt(5), 4*sqrt(10), 5*sqrt(13)) where: a' = sqrt(a^2 - 4*A^2/b*c) = sqrt(15^2-4*150^2/(20*25)) = 3*sqrt(5); b' = sqrt(b^2 - 4*A^2/a*c) = sqrt(20^2-4*150^2/(15*25)) = 4*sqrt(10); c' = sqrt(c^2 - 4*A^2/a*b) = sqrt(25^2 - 4*150^2/(15*20)) = 5*sqrt(13). Now, we use Heron's formula with (t1,t2,t3). We find A'=sqrt(s1*(s1-t1)*(s1-t2)*(s1-t3))with: s1 =(t1+t2+t3)/2 = (3*sqrt(5)+ 4*sqrt(10) + 5*sqrt(13))/2; We find A'= 30.
Links
- T. Dosa, Some Triangle Centers Associated with the Excircles, Forum Geometricorum, Volume 7 (2007) 151-158.
- C. Kimberling, Triangle Centers and Central Triangles, Congr. Numer. 129, 1-295, 1998.
- Eric Weisstein's World of Mathematics, Extouch Triangles
Programs
-
Mathematica
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); t = Sqrt[area2]*(a + b - c)*(a - b + c)*(-a + b + c)/(4*a*b*c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[t], AppendTo[lst, t]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments