A230602 a(n) = Lucas(2^n - 2).
2, 3, 18, 843, 1860498, 9062201101803, 215002084978043708894524818, 121020968315000050139390193037122554865361969834971243, 38343921554607207587938114587587818441864732465057252794474861753545122655196096751375348482086938743684498
Offset: 1
Examples
Engel series expansion of phi^(4 - 2^n) to the base phi^2 for n = 1 to 5. n = 1: phi^2 = phi^2/2 + phi^4/(2*3) + phi^6/(2*3*18) + phi^8/(2*3*18*843) + ... n = 2: 1 = phi^2/3 + phi^4/(3*18) + phi^6/(3*18*843) + phi^8/(3*18*843*1860498) + ... n = 3: 1/phi^4 = phi^2/18 + phi^4/(18*843) + phi^6/(18*843*1860498) + ... n = 4: 1/phi^12 = phi^2/843 + phi^4/(843*1860498) + phi^6/(843*1860498*9062201101803) + ... n = 5: 1/phi^28 = phi^2/1860498 + phi^4/(1860498*9062201101803) + ...
Links
- Wikipedia, Engel Expansion
Programs
-
Mathematica
Table[LucasL[2^n - 2], {n, 1, 10}]
Formula
a(n) = A000032(2^n-2) = phi^(2^n-2) + (1/phi)^(2^n-2), where phi := 1/2*(1 + sqrt(5)).
Recurrence equation: a(1) = 2, a(2) = 3 and a(n) = floor(phi^2*a(n-1)^2) - 5 for n >= 3.
Comments