cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230625 Concatenate prime factorization written in binary, convert back to decimal.

Original entry on oeis.org

1, 2, 3, 10, 5, 11, 7, 11, 14, 21, 11, 43, 13, 23, 29, 20, 17, 46, 19, 85, 31, 43, 23, 47, 22, 45, 15, 87, 29, 93, 31, 21, 59, 81, 47, 174, 37, 83, 61, 93, 41, 95, 43, 171, 117, 87, 47, 83, 30, 86, 113, 173, 53, 47, 91, 95, 115, 93, 59, 349, 61, 95, 119, 22
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2013

Keywords

Comments

As in A080670 the prime factorization is written as p1^e1*...*pN^eN (except for exponents eK = 1 which are omitted), with all factors and exponents in binary (cf. A007088). Then "^" and "*" signs are dropped, all binary digits are concatenated, and the result is converted back to decimal (base 10). - M. F. Hasler, Jun 21 2017
The first nontrivial fixed point of this function is 255987. Smaller numbers such that a(a(n)) = n are 1007, 1269; 1503, 3751. See A230627 for further information. - M. F. Hasler, Jun 21 2017
255987 is the only nontrivial fixed point less than 10000000. - Benjamin Knight, May 16 2018

Examples

			6 = 2*3 = (in binary) 10*11 -> 1011 = 11 in base 10, so a(6) = 11.
20 = 2^2*5 = (in binary) 10^10*101 -> 1010101 = 85 in base 10, so a(20) = 85.
		

Crossrefs

See A289667 for the base 3 version.
See A291803 for partial sums.

Programs

  • Maple
    # take ifsSorted from A080670
    A230625 := proc(n)
        local Ldgs, p,eb,pb,b ;
        b := 2;
        if n = 1 then
            return 1;
        end if;
        Ldgs := [] ;
        for p in ifsSorted(n) do
            pb := convert(op(1,p),base,b) ;
            Ldgs := [op(pb),op(Ldgs)] ;
            if op(2, p) > 1 then
                eb := convert(op(2,p),base,b) ;
                Ldgs := [op(eb),op(Ldgs)] ;
            end if;
        end do:
        add( op(e,Ldgs)*b^(e-1),e=1..nops(Ldgs)) ;
    end proc:
    seq(A230625(n),n=1..30) ; # R. J. Mathar, Aug 05 2017
  • Mathematica
    Table[FromDigits[#, 2] &@ Flatten@ Map[IntegerDigits[#, 2] &, FactorInteger[n] /. {p_, 1} :> {p}], {n, 64}] (* Michael De Vlieger, Jun 23 2017 *)
  • PARI
    a(n) = {if (n==1, return(1)); f = factor(n); s = []; for (i=1, #f~, s = concat(s, binary(f[i, 1])); if (f[i, 2] != 1, s = concat(s, binary(f[i, 2])));); subst(Pol(s), x, 2);} \\ Michel Marcus, Jul 15 2014
    
  • PARI
    A230625(n)=n>1||return(1);fold((x,y)->if(y>1,x<M. F. Hasler, Jun 21 2017
  • Python
    import sympy
    [int(''.join([bin(y)[2:] for x in sorted(sympy.ntheory.factorint(n).items()) for y in x if y != 1]),2) for n in range(2,100)] # compute a(n) for n > 1
    # Chai Wah Wu, Jul 15 2014
    

Extensions

More terms from Chai Wah Wu, Jul 15 2014
Added self-contained definition. - M. F. Hasler, Jun 21 2017