A230639 Let M(1)=0 and for n>1, B(n)=(M(ceiling(n/2))+M(floor(n/2))+2)/2, M(n)=3^B(n)+M(floor(n/2))+1. This sequence gives B(n).
1, 3, 5, 17, 29, 139, 249, 64570209, 129140169, 34315253252541, 68630377364913, 1044297913696328396542704032390321722034449074468444246791788357605, 2088595827392656793085408064780643444068898148936888424953199350297
Offset: 2
Links
- Max Alekseyev, Table n, expression for a(n) for n=2..100
- Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Programs
-
Maple
f:=proc(n) option remember; local B, M; if n<=1 then RETURN([0, 0]); else B:=(f(ceil(n/2))[2] + f(floor(n/2))[2] + 2)/2; M:=3^B+f(floor(n/2))[2]+1; RETURN([B, M]); fi; end proc; [seq(f(n)[1], n=1..9)];
Extensions
Terms a(10) onward from Max Alekseyev, Nov 02 2013
Comments