A230654 Numbers n such that tau(n+1) - tau(n) = 4, where tau(n) = the number of divisors of n (A000005).
11, 17, 19, 31, 39, 43, 55, 65, 67, 69, 77, 87, 97, 129, 134, 163, 175, 183, 185, 194, 207, 211, 221, 237, 241, 247, 249, 254, 265, 283, 295, 309, 321, 327, 331, 337, 343, 351, 365, 398, 404, 417, 437, 454, 458, 459, 469, 471, 473, 482, 493, 494, 497, 505, 517
Offset: 1
Keywords
Examples
19 is in sequence because tau(20) - tau(19) = 6 - 2 = 4.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..4000
Crossrefs
Programs
-
Mathematica
Select[ Range[ 50000], DivisorSigma[0, # ] + 4 == DivisorSigma[0, # + 1] &]
Comments