A230661 T(n,k)=Number of nXk 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value 2-x(i,j).
1, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 9, 15, 9, 0, 0, 15, 21, 21, 15, 0, 0, 33, 135, 123, 135, 33, 0, 0, 63, 177, 531, 531, 177, 63, 0, 0, 129, 1155, 2547, 8613, 2547, 1155, 129, 0, 0, 255, 1509, 11745, 28161, 28161, 11745, 1509, 255, 0, 0, 513, 9855, 54957, 477279, 337977
Offset: 1
Examples
Some solutions for n=5 k=4 ..x..0..x..1....x..1..x..0....x..2..x..2....x..2..x..1....x..2..x..2 ..2..x..1..x....1..x..2..x....2..x..0..x....0..x..1..x....0..x..0..x ..x..2..x..1....x..0..x..0....x..0..x..0....x..0..x..2....x..1..x..0 ..0..x..0..x....2..x..0..x....0..x..2..x....2..x..0..x....1..x..2..x ..x..2..x..2....x..0..x..2....x..2..x..0....x..0..x..2....x..1..x..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..312
Formula
Empirical for column k:
k=1: a(n) = a(n-1) for n>1
k=2: a(n) = a(n-1) +2*a(n-2)
k=3: a(n) = 9*a(n-2) -4*a(n-4)
k=4: a(n) = 3*a(n-1) +8*a(n-2) -a(n-3) -a(n-4) for n>5
k=5: a(n) = 59*a(n-2) -230*a(n-4) -2*a(n-6) +32*a(n-8) for n>10
k=6: [order 23] for n>24
k=7: [order 46] for n>47
Comments