cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A230740 O.g.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k*(k+1)/2 + x) / (1 + k*(k+1)/2*x).

Original entry on oeis.org

1, 1, 3, 10, 51, 370, 3691, 48525, 812089, 16832928, 422860609, 12649706416, 444120983433, 18078156682309, 844323149201499, 44838127594166770, 2686250544297734323, 180295858504407010026, 13473490672899749784979, 1114874245392058455432873
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2013

Keywords

Comments

Compare to an o.g.f. of Genocchi numbers of the second kind (A000366):
Sum_{n>=0} x^n * Product_{k=1..n} k*(k+1)/2 / (1 + k*(k+1)/2*x).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 51*x^4 + 370*x^5 + 3691*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x) + x^2*(1+x)*(3+x)/((1+x)*(1+3*x)) + x^3*(1+x)*(3+x)*(6+x)/((1+x)*(1+3*x)*(1+6*x)) + x^4*(1+x)*(3+x)*(6+x)*(10+x)/((1+x)*(1+3*x)*(1+6*x)*(1+10*x)) +...
		

Crossrefs

Cf. A230682.

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, k*(k+1)/2+x+x*O(x^n))/prod(k=1, m, 1+k*(k+1)/2*x+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ 2^(n+6) * n^(2*n+7/2) / (exp(2*n) * Pi^(2*n+5/2)). - Vaclav Kotesovec, Oct 28 2014

A229045 O.g.f.: Sum_{n>=0} x^n * Product_{k=1..n} (n*k + x) / (1 + n*k*x).

Original entry on oeis.org

1, 1, 8, 120, 3516, 166328, 11532458, 1100805591, 138367161579, 22150155031528, 4399449078063293, 1061636331152735214, 305921694251090263429, 103759120501255220937827, 40916086296549562038319264, 18562249570081891918836678474, 9599588267110033395243891612720
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2013

Keywords

Comments

Compare to a g.f. of Fibonacci numbers (A000045):
Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x).

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 3516*x^4 + 166328*x^5 +...
where
A(x) = 1 + x*(1+x)/(1+x) + x^2*(2+x)*(4+x)/((1+2*x)*(1+4*x)) + x^3*(3+x)*(6+x)*(9+x)/((1+3*x)*(1+6*x)*(1+9*x)) + x^4*(4+x)*(8+x)*(12+x)*(16+x)/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, m*k+x+x*O(x^n))/prod(k=1, m, 1+m*k*x+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", ") )

Formula

a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Oct 28 2014
Showing 1-2 of 2 results.