cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A230739 T(n,k)=Number of (n+3)X(k+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.

Original entry on oeis.org

2, 8, 8, 30, 66, 30, 102, 244, 244, 102, 348, 2016, 2106, 2016, 348, 1172, 6576, 16536, 16536, 6576, 1172, 3956, 54138, 130446, 320970, 130446, 54138, 3956, 13326, 173428, 1025430, 2382398, 2382398, 1025430, 173428, 13326, 44916, 1427040, 8053490
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2013

Keywords

Comments

Table starts
.....2.......8.......30........102..........348...........1172.............3956
.....8......66......244.......2016.........6576..........54138...........173428
....30.....244.....2106......16536.......130446........1025430..........8053490
...102....2016....16536.....320970......2382398.......46599682........342031378
...348....6576...130446....2382398.....43853402......801845362......14669811856
..1172...54138..1025430...46599682....801845362....36695929036.....625553036008
..3956..173428..8053490..342031378..14669811856...625553036008...26681634560690
.13326.1427040.63237238.6692078688.268320990890.28644012159382.1137681116923966

Examples

			Some solutions for n=3 k=4
..x..0..x..0..x..2..x....x..0..x..2..x..2..x....x..0..x..0..x..1..x
..1..x..1..x..1..x..0....2..x..1..x..0..x..1....1..x..1..x..2..x..0
..x..2..x..0..x..1..x....x..0..x..1..x..1..x....x..2..x..0..x..2..x
..1..x..0..x..2..x..0....1..x..0..x..2..x..0....1..x..0..x..2..x..0
..x..2..x..1..x..1..x....x..2..x..0..x..2..x....x..2..x..1..x..1..x
..1..x..1..x..0..x..0....1..x..2..x..1..x..1....1..x..0..x..0..x..0
		

Crossrefs

Column 1 is A230701
Column 3 is A230703
Column 5 is A230705
Column 7 is A230707

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) +3*a(n-2) -6*a(n-3) +a(n-5)
k=2: a(n) = 31*a(n-2) -126*a(n-4) +42*a(n-6) +79*a(n-8) -a(n-10) +8*a(n-12)
k=3: [order 22]
k=4: [order 50]
Showing 1-1 of 1 results.