cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230717 Squares that are both a sum and a difference of two positive cubes.

Original entry on oeis.org

345744, 1058841, 1750329, 8340544, 22127616, 67765824, 68574961, 95004009, 112021056, 252047376, 533794816, 771895089, 1097199376, 1232922769, 1275989841, 1416167424, 2217373921, 4337012736, 4388797504, 5402250000, 5554571841, 6080256576, 7169347584, 10721359936
Offset: 1

Views

Author

Jonathan Sondow, Oct 28 2013

Keywords

Comments

Intersection of A050802 and A038596.
Square terms of sequence A225908. - Michel Marcus, Apr 22 2016

Examples

			345744 = 588^2 = 14^3 + 70^3 = 71^3 - 23^3.
		

References

  • Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.

Crossrefs

Programs

  • PARI
    isA038596(n)=for(k=sqrtnint(n,3)+1,(sqrtint(12*n-3)+3)\6,if(ispower(n-k^3,3), return(issquare(n)))); 0
    isA050802(n)=for(k=sqrtnint((n+1)\2, 3), sqrtnint(n-1, 3), if(ispower(n-k^3, 3), return(issquare(n)))); 0
    is(n)=isA038596(n) && isA050802(n) \\ Charles R Greathouse IV, Oct 28 2013

Formula

a(n) = k^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers k, a, b, c, d.
a(n) = A230716(n)^2.

Extensions

a(5)-a(24) from Donovan Johnson, Oct 28 2013